These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32510613)

  • 21. A multifunctional 5-aminolevulinic acid derivative induces erythroid differentiation of K562 human erythroleukemic cells.
    Berkovitch-Luria G; Yakobovitch S; Weitman M; Nudelman A; Rozic G; Rephaeli A; Malik Z
    Eur J Pharm Sci; 2012 Aug; 47(1):206-14. PubMed ID: 22705251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aquisition, mobilization and utilization of cellular iron and heme: endless findings and growing evidence of tight regulation.
    Taketani S
    Tohoku J Exp Med; 2005 Apr; 205(4):297-318. PubMed ID: 15750326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells.
    Georgiou-Siafis SK; Tsiftsoglou AS
    Biochem Pharmacol; 2020 May; 175():113900. PubMed ID: 32156661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The clathrin assembly protein PICALM is required for erythroid maturation and transferrin internalization in mice.
    Suzuki M; Tanaka H; Tanimura A; Tanabe K; Oe N; Rai S; Kon S; Fukumoto M; Takei K; Abe T; Matsumura I; Kanakura Y; Watanabe T
    PLoS One; 2012; 7(2):e31854. PubMed ID: 22363754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans.
    Bairwa G; Caza M; Horianopoulos L; Hu G; Kronstad J
    Cell Microbiol; 2019 Mar; 21(3):e12961. PubMed ID: 30291809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A protective role of heme-regulated eIF2α kinase in cadmium-induced toxicity in erythroid cells.
    Wang L; Wang X; Zhang S; Qu G; Liu S
    Food Chem Toxicol; 2013 Dec; 62():880-91. PubMed ID: 24161693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancements of the production of bilirubin and the expression of β-globin by carbon monoxide during erythroid differentiation.
    Mu A; Li M; Tanaka M; Adachi Y; Tai TT; Liem PH; Izawa S; Furuyama K; Taketani S
    FEBS Lett; 2016 May; 590(10):1447-54. PubMed ID: 27087140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depletion of glutamine enhances sodium butyrate-induced erythroid differentiation of K562 cells.
    Canh Hiep N; Kinohira S; Furuyama K; Taketani S
    J Biochem; 2012 Dec; 152(6):509-19. PubMed ID: 22923740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular iron and heme trafficking and metabolism in developing erythroblasts.
    Kafina MD; Paw BH
    Metallomics; 2017 Sep; 9(9):1193-1203. PubMed ID: 28795723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The transferrin receptor: the cellular iron gate.
    Gammella E; Buratti P; Cairo G; Recalcati S
    Metallomics; 2017 Oct; 9(10):1367-1375. PubMed ID: 28671201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of heme biosynthesis: distinct regulatory features in erythroid cells.
    Ponka P; Schulman HM
    Stem Cells; 1993 May; 11 Suppl 1():24-35. PubMed ID: 8318916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic-scale gene activation screens identify SLCO2B1 as a heme transporter that enhances cellular iron availability.
    Unlu G; Prizer B; Erdal R; Yeh HW; Bayraktar EC; Birsoy K
    Mol Cell; 2022 Aug; 82(15):2832-2843.e7. PubMed ID: 35714613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disturbance of cellular iron uptake and utilisation by aluminium.
    Pérez G; Garbossa G; Di Risio C; Vittori D; Nesse A
    J Inorg Biochem; 2001 Nov; 87(1-2):21-7. PubMed ID: 11709209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Update on the biology of heme synthesis in erythroid cells].
    Fujiwara T; Harigae H
    Rinsho Ketsueki; 2015 Feb; 56(2):119-27. PubMed ID: 25765790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of alternative transcripts of ferroportin-1 during human erythroid differentiation.
    Cianetti L; Segnalini P; Calzolari A; Morsilli O; Felicetti F; Ramoni C; Gabbianelli M; Testa U; Sposi NM
    Haematologica; 2005 Dec; 90(12):1595-606. PubMed ID: 16330432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heme inhibits transferrin endocytosis in immature erythroid cells.
    Iacopetta B; Morgan E
    Biochim Biophys Acta; 1984 Oct; 805(2):211-6. PubMed ID: 6487660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Function and regulation of transferrin and ferritin.
    Ponka P; Beaumont C; Richardson DR
    Semin Hematol; 1998 Jan; 35(1):35-54. PubMed ID: 9460808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells.
    Ryu MS; Duck KA; Philpott CC
    Blood Cells Mol Dis; 2018 Mar; 69():75-81. PubMed ID: 29032941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship between heme synthesis and iron uptake in erythroid cells.
    Hradilek A; Neuwirt J
    Biomed Biochim Acta; 1990; 49(2-3):S94-9. PubMed ID: 2386533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heme-dependent induction of mitophagy program during differentiation of murine erythroid cells.
    Ikeda M; Kato H; Shima H; Matsumoto M; Furukawa E; Yan Y; Liao R; Xu J; Muto A; Fujiwara T; Harigae H; Bresnick EH; Igarashi K
    Exp Hematol; 2023 Feb; 118():21-30. PubMed ID: 36481429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.