BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 32510631)

  • 1. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
    Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C
    Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing for Solid-State Energy Storage.
    Tian X; Xu B
    Small Methods; 2021 Dec; 5(12):e2100877. PubMed ID: 34928040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive-free MXene inks and direct printing of micro-supercapacitors.
    Zhang CJ; McKeon L; Kremer MP; Park SH; Ronan O; Seral-Ascaso A; Barwich S; Coileáin CÓ; McEvoy N; Nerl HC; Anasori B; Coleman JN; Gogotsi Y; Nicolosi V
    Nat Commun; 2019 Apr; 10(1):1795. PubMed ID: 30996224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview.
    Zeng L; Ling S; Du D; He H; Li X; Zhang C
    Adv Sci (Weinh); 2023 Nov; 10(32):e2303716. PubMed ID: 37740446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing of Additive-Free 2D Ti
    Orangi J; Hamade F; Davis VA; Beidaghi M
    ACS Nano; 2020 Jan; 14(1):640-650. PubMed ID: 31891247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Development of Printed Micro-Supercapacitors: Printable Materials, Printing Technologies, and Perspectives.
    Li H; Liang J
    Adv Mater; 2020 Jan; 32(3):e1805864. PubMed ID: 30941808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode.
    Ghosh K; Ng S; Iffelsberger C; Pumera M
    Chemistry; 2020 Dec; 26(67):15746-15753. PubMed ID: 33166037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors.
    Yang W; Yang J; Byun JJ; Moissinac FP; Xu J; Haigh SJ; Domingos M; Bissett MA; Dryfe RAW; Barg S
    Adv Mater; 2019 Sep; 31(37):e1902725. PubMed ID: 31343084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives.
    Sajedi-Moghaddam A; Rahmanian E; Naseri N
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34487-34504. PubMed ID: 32628006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.
    Fu K; Yao Y; Dai J; Hu L
    Adv Mater; 2017 Mar; 29(9):. PubMed ID: 27982475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printable Gel Polymer Electrolytes for Solid-State Printed Supercapacitors.
    Seol ML; Nam I; Sadatian E; Dutta N; Han JW; Meyyappan M
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33435423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Materials for 3D Printing by Photopolymerization.
    Layani M; Wang X; Magdassi S
    Adv Mater; 2018 Oct; 30(41):e1706344. PubMed ID: 29756242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Supercapacitor Exploiting PEDOT-Based Resin and Polymer Gel Electrolyte.
    Bertana V; Scordo G; Camilli E; Ge L; Zaccagnini P; Lamberti A; Marasso SL; Scaltrito L
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review.
    Fonseca N; Thummalapalli SV; Jambhulkar S; Ravichandran D; Zhu Y; Patil D; Thippanna V; Ramanathan A; Xu W; Guo S; Ko H; Fagade M; Kannan AM; Nian Q; Asadi A; Miquelard-Garnier G; Dmochowska A; Hassan MK; Al-Ejji M; El-Dessouky HM; Stan F; Song K
    Small; 2023 Dec; 19(50):e2302718. PubMed ID: 37501325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of cellular materials for advanced electrochemical energy storage and conversion.
    Tian X; Zhou K
    Nanoscale; 2020 Apr; 12(14):7416-7432. PubMed ID: 32211665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries.
    Cheng M; Jiang Y; Yao W; Yuan Y; Deivanayagam R; Foroozan T; Huang Z; Song B; Rojaee R; Shokuhfar T; Pan Y; Lu J; Shahbazian-Yassar R
    Adv Mater; 2018 Sep; 30(39):e1800615. PubMed ID: 30132998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices.
    Zong W; Ouyang Y; Miao YE; Liu T; Lai F
    Chem Commun (Camb); 2022 Feb; 58(13):2075-2095. PubMed ID: 35048921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.