These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 32510636)
1. Empirical noise performance of prototype active pixel arrays employing polycrystalline silicon thin-film transistors. Koniczek M; Antonuk LE; El-Mohri Y; Liang AK; Zhao Q Med Phys; 2020 Sep; 47(9):3972-3983. PubMed ID: 32510636 [TBL] [Abstract][Full Text] [Related]
2. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors. Koniczek M; Antonuk LE; El-Mohri Y; Liang AK; Zhao Q Med Phys; 2017 Jul; 44(7):3491-3503. PubMed ID: 28376261 [TBL] [Abstract][Full Text] [Related]
3. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors. El-Mohri Y; Antonuk LE; Koniczek M; Zhao Q; Li Y; Street RA; Lu JP Med Phys; 2009 Jul; 36(7):3340-55. PubMed ID: 19673229 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigation of the count rate capabilities of in-pixel amplifiers for photon counting arrays based on polycrystalline silicon TFTs. Liang AK; Koniczek M; Antonuk LE; El-Mohri Y; Zhao Q Med Phys; 2018 Oct; 45(10):4418-4429. PubMed ID: 30106180 [TBL] [Abstract][Full Text] [Related]
5. Count rate capabilities of polycrystalline silicon photon counting detectors for CBCT applications-a theoretical study. Liang AK; El-Mohri Y; Zhao Q; Koniczek M; Antonuk LE Phys Med Biol; 2020 Feb; 65(3):035009. PubMed ID: 31874461 [TBL] [Abstract][Full Text] [Related]
6. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs. Liang AK; Koniczek M; Antonuk LE; El-Mohri Y; Zhao Q; Street RA; Lu JP Phys Med Biol; 2016 Mar; 61(5):1968-85. PubMed ID: 26878107 [TBL] [Abstract][Full Text] [Related]
7. Additive noise properties of active matrix flat-panel imagers. Maolinbay M; El-Mohri Y; Antonuk LE; Jee KW; Nassif S; Rong X; Zhao Q Med Phys; 2000 Aug; 27(8):1841-54. PubMed ID: 10984231 [TBL] [Abstract][Full Text] [Related]
8. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays. Antonuk LE; Zhao Q; El-Mohri Y; Du H; Wang Y; Street RA; Ho J; Weisfield R; Yao W Med Phys; 2009 Jul; 36(7):3322-39. PubMed ID: 19673228 [TBL] [Abstract][Full Text] [Related]
9. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy. Matsuura N; Zhao W; Huang Z; Rowlands JA Med Phys; 1999 May; 26(5):672-81. PubMed ID: 10360526 [TBL] [Abstract][Full Text] [Related]
10. Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology. Siewerdsen JH; Antonuk LE; el-Mohri Y; Yorkston J; Huang W; Boudry JM; Cunningham IA Med Phys; 1997 Jan; 24(1):71-89. PubMed ID: 9029542 [TBL] [Abstract][Full Text] [Related]
11. Noise Characterization of Polycrystalline Silicon Thin Film Transistors for X-ray Imagers Based on Active Pixel Architectures. Antonuk LE; Koniczek M; McDonald J; El-Mohri Y; Zhao Q; Behravan M Mater Res Soc Symp Proc; 2008; 1066():457-462. PubMed ID: 20862269 [TBL] [Abstract][Full Text] [Related]
12. Empirical investigation of the signal performance of a high-resolution, indirect detection, active matrix flat-panel imager (AMFPI) for fluoroscopic and radiographic operation. Antonuk LE; El-Mohri Y; Siewerdsen JH; Yorkston J; Huang W; Scarpine VE; Street RA Med Phys; 1997 Jan; 24(1):51-70. PubMed ID: 9029541 [TBL] [Abstract][Full Text] [Related]
13. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis. Zhao C; Kanicki J Med Phys; 2014 Sep; 41(9):091902. PubMed ID: 25186389 [TBL] [Abstract][Full Text] [Related]
14. Toward Scintillator High-Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP-AMFPI): Initial fabrication and characterization. Scheuermann JR; Howansky A; Hansroul M; Léveillé S; Tanioka K; Zhao W Med Phys; 2018 Feb; 45(2):794-802. PubMed ID: 29171067 [TBL] [Abstract][Full Text] [Related]
15. Cascaded systems analysis of a-Se/a-Si and a-InGaZnO TFT passive and active pixel sensors for tomosynthesis. Sengupta A; Zhao C; Konstantinidis A; Kanicki J Phys Med Biol; 2019 Jan; 64(2):025012. PubMed ID: 30523916 [TBL] [Abstract][Full Text] [Related]
16. Signal, noise power spectrum, and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology. Siewerdsen JH; Antonuk LE; el-Mohri Y; Yorkston J; Huang W; Cunningham IA Med Phys; 1998 May; 25(5):614-28. PubMed ID: 9608470 [TBL] [Abstract][Full Text] [Related]
17. Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager. El-Mohri Y; Jee KW; Antonuk LE; Maolinbay M; Zhao Q Med Phys; 2001 Dec; 28(12):2538-50. PubMed ID: 11797959 [TBL] [Abstract][Full Text] [Related]
18. X-ray quantum limited portal imaging using amorphous silicon flat-panel arrays. Munro P; Bouius DC Med Phys; 1998 May; 25(5):689-702. PubMed ID: 9608480 [TBL] [Abstract][Full Text] [Related]
19. Relative dosimetry using active matrix flat-panel imager (AMFPI) technology. El-Mohri Y; Antonuk LE; Yorkston J; Jee KW; Maolinbay M; Lam KL; Siewerdsen JH Med Phys; 1999 Aug; 26(8):1530-41. PubMed ID: 10501053 [TBL] [Abstract][Full Text] [Related]
20. Segmented crystalline scintillators: empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(TI) detector. Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Wang Y; Li Y; Du H; Perna L Med Phys; 2006 Apr; 33(4):1053-66. PubMed ID: 16696482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]