These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32510709)
1. Synthesis and Post-Synthesis Transformation of Germanosilicate Zeolites. Opanasenko M; Shamzhy M; Wang Y; Yan W; Nachtigall P; Čejka J Angew Chem Int Ed Engl; 2020 Oct; 59(44):19380-19389. PubMed ID: 32510709 [TBL] [Abstract][Full Text] [Related]
2. Post-Synthesis Stabilization of Germanosilicate Zeolites ITH, IWW, and UTL by Substitution of Ge for Al. Shamzhy MV; Eliašová P; Vitvarová D; Opanasenko MV; Firth DS; Morris RE Chemistry; 2016 Nov; 22(48):17377-17386. PubMed ID: 27754569 [TBL] [Abstract][Full Text] [Related]
3. The assembly-disassembly-organization-reassembly mechanism for 3D-2D-3D transformation of germanosilicate IWW zeolite. Chlubná-Eliášová P; Tian Y; Pinar AB; Kubů M; Čejka J; Morris RE Angew Chem Int Ed Engl; 2014 Jul; 53(27):7048-52. PubMed ID: 24825119 [TBL] [Abstract][Full Text] [Related]
4. Post-synthesis treatment gives highly stable siliceous zeolites through the isomorphous substitution of silicon for germanium in germanosilicates. Xu H; Jiang JG; Yang B; Zhang L; He M; Wu P Angew Chem Int Ed Engl; 2014 Jan; 53(5):1355-9. PubMed ID: 24375782 [TBL] [Abstract][Full Text] [Related]
5. ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate. Yue Q; Kasneryk V; Mazur M; Abdi S; Zhou Y; Wheatley PS; Morris RE; Čejka J; Shamzhy M; Opanasenko M J Mater Chem A Mater; 2024 Jan; 12(2):802-812. PubMed ID: 38178865 [TBL] [Abstract][Full Text] [Related]
6. From double-four-ring germanosilicates to new zeolites: in silico investigation. Trachta M; Bludský O; Čejka J; Morris RE; Nachtigall P Chemphyschem; 2014 Oct; 15(14):2972-6. PubMed ID: 25048804 [TBL] [Abstract][Full Text] [Related]
7. Topotactic Conversion of Alkali-Treated Intergrown Germanosilicate CIT-13 into Single-Crystalline ECNU-21 Zeolite as Shape-Selective Catalyst for Ethylene Oxide Hydration. Liu X; Mao W; Jiang J; Lu X; Peng M; Xu H; Han L; Che SA; Wu P Chemistry; 2019 Mar; 25(17):4520-4529. PubMed ID: 30698847 [TBL] [Abstract][Full Text] [Related]
8. The ADOR mechanism for the synthesis of new zeolites. Eliášová P; Opanasenko M; Wheatley PS; Shamzhy M; Mazur M; Nachtigall P; Roth WJ; Morris RE; Čejka J Chem Soc Rev; 2015 Oct; 44(20):7177-206. PubMed ID: 25946705 [TBL] [Abstract][Full Text] [Related]
9. Double Four Ring Units-Containing Zeolites: Synthesis, Structural Modification and Catalytic Applications. Peng M; Zhao Y; Xu H; Jiang J; Wu P Chemistry; 2024 Mar; 30(15):e202303657. PubMed ID: 38116930 [TBL] [Abstract][Full Text] [Related]
10. Ionothermal Synthesis of Germanosilicate Zeolites Constructed with Double-Four-Ring Structure-Building Units in the Presence of Organic Base. Wang M; Zhang L; Guo K; Lin Y; Meng X; Huang P; Wei Y; Zhang R Chem Asian J; 2019 Mar; 14(5):621-626. PubMed ID: 30667595 [TBL] [Abstract][Full Text] [Related]
11. A procedure for identifying possible products in the assembly-disassembly-organization-reassembly (ADOR) synthesis of zeolites. Henkelis SE; Mazur M; Rice CM; Bignami GPM; Wheatley PS; Ashbrook SE; Čejka J; Morris RE Nat Protoc; 2019 Mar; 14(3):781-794. PubMed ID: 30683939 [TBL] [Abstract][Full Text] [Related]
12. Identification of double four-ring units in germanosilicate ITQ-13 zeolite by solid-state NMR spectroscopy. Liu X; Chu Y; Wang Q; Wang W; Wang C; Xu J; Deng F Solid State Nucl Magn Reson; 2017 Oct; 87():1-9. PubMed ID: 28582643 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, Isotopic Enrichment, and Solid-State NMR Characterization of Zeolites Derived from the Assembly, Disassembly, Organization, Reassembly Process. Bignami GPM; Dawson DM; Seymour VR; Wheatley PS; Morris RE; Ashbrook SE J Am Chem Soc; 2017 Apr; 139(14):5140-5148. PubMed ID: 28319391 [TBL] [Abstract][Full Text] [Related]
14. Rational design and HT techniques allow the synthesis of new IWR zeolite polymorphs. Cantín A; Corma A; Diaz-Cabanas MJ; Jorda JL; Moliner M J Am Chem Soc; 2006 Apr; 128(13):4216-7. PubMed ID: 16568982 [TBL] [Abstract][Full Text] [Related]
15. Mechanochemically assisted hydrolysis in the ADOR process. Rainer DN; Rice CM; Warrender SJ; Ashbrook SE; Morris RE Chem Sci; 2020 Jul; 11(27):7060-7069. PubMed ID: 33033606 [TBL] [Abstract][Full Text] [Related]
16. The mechanism of the initial step of germanosilicate formation in solution: a first-principles molecular dynamics study. Trinh TT; Rozanska X; Delbecq F; Tuel A; Sautet P Phys Chem Chem Phys; 2016 Jun; 18(21):14419-25. PubMed ID: 27172391 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route. Wheatley PS; Čejka J; Morris RE J Vis Exp; 2016 Apr; (110):e53463. PubMed ID: 27078165 [TBL] [Abstract][Full Text] [Related]
18. Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Kasneryk V; Shamzhy M; Opanasenko M; Wheatley PS; Morris SA; Russell SE; Mayoral A; Trachta M; Čejka J; Morris RE Angew Chem Int Ed Engl; 2017 Apr; 56(15):4324-4327. PubMed ID: 28295998 [TBL] [Abstract][Full Text] [Related]
19. Direct synthesis of hydrothermally stable Ge-IWR zeolites. Fu WH; Yuan Z; Wang Z; Wang Y; Yang W; He MY Dalton Trans; 2017 May; 46(20):6692-6699. PubMed ID: 28484777 [TBL] [Abstract][Full Text] [Related]
20. Breaking Structural Energy Constraints: Hydrothermal Crystallization of High-Silica Germanosilicates by a Building-Unit Self-Growth Approach. Peng M; Jiang J; Liu X; Ma Y; Jiao M; Xu H; Wu H; He M; Wu P Chemistry; 2018 Sep; 24(50):13297-13305. PubMed ID: 29888820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]