These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 32510710)

  • 21. Layered Oxide Cathodes Promoted by Crystal Regulation Strategies for Potassium-Ion Batteries.
    Zhang Z; Duan L; Li A; Xu J; Shen J; Zhou X
    Chemistry; 2022 Sep; 28(52):e202201562. PubMed ID: 35704028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes.
    Xie J; Zhang Q
    Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Layered Oxide Cathode for Potassium-Ion Battery: Recent Progress and Prospective.
    Zhang X; Wei Z; Dinh KN; Chen N; Chen G; Du F; Yan Q
    Small; 2020 Sep; 16(38):e2002700. PubMed ID: 32762009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developing better ester- and ether-based electrolytes for potassium-ion batteries.
    Li L; Zhao S; Hu Z; Chou SL; Chen J
    Chem Sci; 2021 Jan; 12(7):2345-2356. PubMed ID: 34163999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust Biomass-Derived Carbon Frameworks as High-Performance Anodes in Potassium-Ion Batteries.
    Chen J; Chen G; Zhao S; Feng J; Wang R; Parkin IP; He G
    Small; 2023 Feb; 19(7):e2206588. PubMed ID: 36470658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Progress on Sb- and Bi-based Chalcogenide Anodes for Potassium-Ion Batteries.
    Chang CB; Tuan HY
    Chem Asian J; 2022 Jun; 17(12):e202200170. PubMed ID: 35441807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
    Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I
    Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vanadium Tetrasulfide for Next-Generation Rechargeable Batteries: Advances and Challenges.
    Yao K; Wu M; Chen D; Liu C; Xu C; Yang D; Yao H; Liu L; Zheng Y; Rui X
    Chem Rec; 2022 Oct; 22(10):e202200117. PubMed ID: 35789529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced Anode Materials of Potassium Ion Batteries: from Zero Dimension to Three Dimensions.
    Zheng J; Wu Y; Sun Y; Rong J; Li H; Niu L
    Nanomicro Lett; 2020 Oct; 13(1):12. PubMed ID: 34138200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. K
    Zhang Y; Niu X; Tan L; Deng L; Jin S; Zeng L; Xu H; Zhu Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9332-9340. PubMed ID: 31999423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Realizing Fast Diffusion Kinetics Based on Three-Dimensional Ordered Macroporous Cu
    Huang H; Etogo CA; Chen C; Bi R; Zhang L
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36982-36991. PubMed ID: 34314162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Enormous Potential of Sodium/Potassium-Ion Batteries as the Mainstream Energy Storage Technology for Large-Scale Commercial Applications.
    Gao Y; Yu Q; Yang H; Zhang J; Wang W
    Adv Mater; 2024 Jun; ():e2405989. PubMed ID: 38943573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon Anode Materials for Rechargeable Alkali Metal Ion Batteries and
    Ding R; Huang Y; Li G; Liao Q; Wei T; Liu Y; Huang Y; He H
    Front Chem; 2020; 8():607504. PubMed ID: 33392150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.