BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32510763)

  • 1. TCF20 dysfunction leads to cortical neurogenesis defects and autistic-like behaviors in mice.
    Feng C; Zhao J; Ji F; Su L; Chen Y; Jiao J
    EMBO Rep; 2020 Aug; 21(8):e49239. PubMed ID: 32510763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo and rare inherited mutations implicate the transcriptional coregulator TCF20/SPBP in autism spectrum disorder.
    Babbs C; Lloyd D; Pagnamenta AT; Twigg SR; Green J; McGowan SJ; Mirza G; Naples R; Sharma VP; Volpi EV; Buckle VJ; Wall SA; Knight SJ; ; Parr JR; Wilkie AO
    J Med Genet; 2014 Nov; 51(11):737-47. PubMed ID: 25228304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo nonsense and frameshift variants of TCF20 in individuals with intellectual disability and postnatal overgrowth.
    Schäfgen J; Cremer K; Becker J; Wieland T; Zink AM; Kim S; Windheuser IC; Kreiß M; Aretz S; Strom TM; Wieczorek D; Engels H
    Eur J Hum Genet; 2016 Dec; 24(12):1739-1745. PubMed ID: 27436265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome.
    Vetrini F; McKee S; Rosenfeld JA; Suri M; Lewis AM; Nugent KM; Roeder E; Littlejohn RO; Holder S; Zhu W; Alaimo JT; Graham B; Harris JM; Gibson JB; Pastore M; McBride KL; Komara M; Al-Gazali L; Al Shamsi A; Fanning EA; Wierenga KJ; Scott DA; Ben-Neriah Z; Meiner V; Cassuto H; Elpeleg O; Holder JL; Burrage LC; Seaver LH; Van Maldergem L; Mahida S; Soul JS; Marlatt M; Matyakhina L; Vogt J; Gold JA; Park SM; Varghese V; Lampe AK; Kumar A; Lees M; Holder-Espinasse M; McConnell V; Bernhard B; Blair E; Harrison V; ; Muzny DM; Gibbs RA; Elsea SH; Posey JE; Bi W; Lalani S; Xia F; Yang Y; Eng CM; Lupski JR; Liu P
    Genome Med; 2019 Feb; 11(1):12. PubMed ID: 30819258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tcf20 deficiency is associated with increased liver fibrogenesis and alterations in mitochondrial metabolism in mice and humans.
    Córdoba-Jover B; Ribera J; Portolés I; Lecue E; Rodriguez-Vita J; Pérez-Sisqués L; Mannara F; Solsona-Vilarrasa E; García-Ruiz C; Fernández-Checa JC; Casals G; Rodríguez-Revenga L; Álvarez-Mora MI; Arteche-López A; Díaz de Bustamante A; Calvo R; Pujol A; Azkargorta M; Elortza F; Malagelada C; Pinyol R; Huguet-Pradell J; Melgar-Lesmes P; Jiménez W; Morales-Ruiz M
    Liver Int; 2023 Aug; 43(8):1822-1836. PubMed ID: 37312667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes.
    Zhang W; Ma L; Yang M; Shao Q; Xu J; Lu Z; Zhao Z; Chen R; Chai Y; Chen JF
    Genes Dev; 2020 Apr; 34(7-8):580-597. PubMed ID: 32115408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MacroH2A1.2 deficiency leads to neural stem cell differentiation defects and autism-like behaviors.
    Ma H; Su L; Xia W; Wang W; Tan G; Jiao J
    EMBO Rep; 2021 Jul; 22(7):e52150. PubMed ID: 34046991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rare and de novo duplications containing TCF20 are associated with a neurodevelopmental disorder.
    Lévy J; Cogan G; Maruani A; Maillard A; Dupont C; Drunat S; Rachid M; Atzori P; Delorme R; Jeyarajah S; Isidor B; Pichon O; Moradkhani K; Verloes A; Tabet AC
    Clin Genet; 2022 Mar; 101(3):364-370. PubMed ID: 34904221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TBR1 regulates autism risk genes in the developing neocortex.
    Notwell JH; Heavner WE; Darbandi SF; Katzman S; McKenna WL; Ortiz-Londono CF; Tastad D; Eckler MJ; Rubenstein JL; McConnell SK; Chen B; Bejerano G
    Genome Res; 2016 Aug; 26(8):1013-22. PubMed ID: 27325115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TAOK2 rescues autism-linked developmental deficits in a 16p11.2 microdeletion mouse model.
    Scharrenberg R; Richter M; Johanns O; Meka DP; Rücker T; Murtaza N; Lindenmaier Z; Ellegood J; Naumann A; Zhao B; Schwanke B; Sedlacik J; Fiehler J; Hanganu-Opatz IL; Lerch JP; Singh KK; de Anda FC
    Mol Psychiatry; 2022 Nov; 27(11):4707-4721. PubMed ID: 36123424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability.
    Cortázar D; Kunz C; Selfridge J; Lettieri T; Saito Y; MacDougall E; Wirz A; Schuermann D; Jacobs AL; Siegrist F; Steinacher R; Jiricny J; Bird A; Schär P
    Nature; 2011 Feb; 470(7334):419-23. PubMed ID: 21278727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants.
    Siu MT; Butcher DT; Turinsky AL; Cytrynbaum C; Stavropoulos DJ; Walker S; Caluseriu O; Carter M; Lou Y; Nicolson R; Georgiades S; Szatmari P; Anagnostou E; Scherer SW; Choufani S; Brudno M; Weksberg R
    Clin Epigenetics; 2019 Jul; 11(1):103. PubMed ID: 31311581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autism-associated ANK2 regulates embryonic neurodevelopment.
    Kawano S; Baba M; Fukushima H; Miura D; Hashimoto H; Nakazawa T
    Biochem Biophys Res Commun; 2022 May; 605():45-50. PubMed ID: 35313230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of TRIM32 Leads to Reduced GABAergic Interneuron Generation and Autism-like Behaviors in Mice via Suppressing mTOR Signaling.
    Zhu JW; Zou MM; Li YF; Chen WJ; Liu JC; Chen H; Fang LP; Zhang Y; Wang ZT; Chen JB; Huang W; Li S; Jia WQ; Wang QQ; Zhen XC; Liu CF; Li S; Xiao ZC; Xu GQ; Schwamborn JC; Schachner M; Ma QH; Xu RX
    Cereb Cortex; 2020 May; 30(5):3240-3258. PubMed ID: 31828304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankrd11 is a chromatin regulator involved in autism that is essential for neural development.
    Gallagher D; Voronova A; Zander MA; Cancino GI; Bramall A; Krause MP; Abad C; Tekin M; Neilsen PM; Callen DF; Scherer SW; Keller GM; Kaplan DR; Walz K; Miller FD
    Dev Cell; 2015 Jan; 32(1):31-42. PubMed ID: 25556659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo DNA methylation controls neuronal maturation during adult hippocampal neurogenesis.
    Zocher S; Overall RW; Berdugo-Vega G; Rund N; Karasinsky A; Adusumilli VS; Steinhauer C; Scheibenstock S; Händler K; Schultze JL; Calegari F; Kempermann G
    EMBO J; 2021 Sep; 40(18):e107100. PubMed ID: 34337766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis.
    Zhang Z; Gao F; Kang X; Li J; Zhang L; Dong W; Jin Z; Li F; Gao N; Cai X; Yang S; Zhang J; Ren X; Yang X
    Brain Res Bull; 2015 Apr; 113():8-16. PubMed ID: 25701255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons.
    Xu Q; Liu YY; Wang X; Tan GH; Li HP; Hulbert SW; Li CY; Hu CC; Xiong ZQ; Xu X; Jiang YH
    Mol Autism; 2018; 9():65. PubMed ID: 30574290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A TDG/CBP/RARα ternary complex mediates the retinoic acid-dependent expression of DNA methylation-sensitive genes.
    Léger H; Smet-Nocca C; Attmane-Elakeb A; Morley-Fletcher S; Benecke AG; Eilebrecht S
    Genomics Proteomics Bioinformatics; 2014 Feb; 12(1):8-18. PubMed ID: 24394593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nap1l1 Controls Embryonic Neural Progenitor Cell Proliferation and Differentiation in the Developing Brain.
    Qiao H; Li Y; Feng C; Duo S; Ji F; Jiao J
    Cell Rep; 2018 Feb; 22(9):2279-2293. PubMed ID: 29490266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.