These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32510929)

  • 1. Zwitterionic Polymer Conjugated Glucagon-like Peptide-1 for Prolonged Glycemic Control.
    Tsao C; Zhang P; Yuan Z; Dong D; Wu K; Niu L; McMullen P; Luozhong S; Hung HC; Cheng YH; Jiang S
    Bioconjug Chem; 2020 Jul; 31(7):1812-1819. PubMed ID: 32510929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BPI-3016, a novel long-acting hGLP-1 analogue for the treatment of Type 2 diabetes mellitus.
    Ding L; Lu S; Wang Y; Chen H; Long W; Ma C; He E; Yan D; Tan F
    Pharmacol Res; 2017 Aug; 122():130-139. PubMed ID: 28619366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Albumin-binding domain extends half-life of glucagon-like peptide-1.
    Tan H; Su W; Zhang W; Zhang J; Sattler M; Zou P
    Eur J Pharmacol; 2021 Jan; 890():173650. PubMed ID: 33049303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials.
    Gilbert MP; Pratley RE
    Front Endocrinol (Lausanne); 2020; 11():178. PubMed ID: 32308645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucagon-Like Peptide-1 (GLP-1)-Based Therapeutics: Current Status and Future Opportunities beyond Type 2 Diabetes.
    Cheang JY; Moyle PM
    ChemMedChem; 2018 Apr; 13(7):662-671. PubMed ID: 29430842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of GW002, a novel recombinant human glucagon-like peptide-1 (GLP-1) analog fusion protein, on CHO recombinant cells and BKS-db mice.
    Ji WW; Yu DA; Fan M; You M; Lu Y; Li EB; Xie N; Yan SS
    Acta Diabetol; 2017 Jul; 54(7):685-693. PubMed ID: 28424924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond glucose lowering: glucagon-like peptide-1 receptor agonists, body weight and the cardiovascular system.
    Vergès B; Bonnard C; Renard E
    Diabetes Metab; 2011 Dec; 37(6):477-88. PubMed ID: 21871831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithocholic Acid-Based Peptide Delivery System for an Enhanced Pharmacological and Pharmacokinetic Profile of Xenopus GLP-1 Analogs.
    Han J; Chen X; Zhao L; Fu J; Sun L; Zhang Y; Zhou F; Fei Y
    Mol Pharm; 2018 Jul; 15(7):2840-2856. PubMed ID: 29799205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon-Like Peptide-1 Receptor Agonists and Strategies To Improve Their Efficiency.
    Alavi SE; Cabot PJ; Moyle PM
    Mol Pharm; 2019 Jun; 16(6):2278-2295. PubMed ID: 31050435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developments of glucagon like peptide-1 (GLP-1) and long-acting analogs in clinical and preclinical studies for treatment of type 2 diabetes.
    Li Y; Tang L; Gong M
    Curr Pharm Biotechnol; 2013; 14(9):835-41. PubMed ID: 24372261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incretin-based therapies: can we achieve glycemic control and cardioprotection?
    Angeli FS; Shannon RP
    J Endocrinol; 2014 Apr; 221(1):T17-30. PubMed ID: 23926280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical efficacy and safety of once-weekly glucagon-like peptide-1 agonists in development for treatment of type 2 diabetes mellitus in adults.
    Tzefos M; Harris K; Brackett A
    Ann Pharmacother; 2012 Jan; 46(1):68-78. PubMed ID: 22232377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly-GLP-1, a novel long-lasting glucagon-like peptide-1 polymer, ameliorates hyperglycaemia by improving insulin sensitivity and increasing pancreatic beta-cell proliferation.
    Ma X; Hui H; Liu Z; He G; Hu J; Meng J; Guan L; Luo X
    Diabetes Obes Metab; 2009 Oct; 11(10):953-65. PubMed ID: 19531053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucagon-Like Peptide-1 Receptor Agonists and Cardiovascular Risk Reduction in Type 2 Diabetes Mellitus: Is It a Class Effect?
    Li Y; Rosenblit PD
    Curr Cardiol Rep; 2018 Sep; 20(11):113. PubMed ID: 30259238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incretin-based therapy of type 2 diabetes mellitus.
    Knop FK; Vilsbøll T; Holst JJ
    Curr Protein Pept Sci; 2009 Feb; 10(1):46-55. PubMed ID: 19275672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics and types of GLP-1 receptor agonists. An opportunity for individualized therapy].
    Jódar E
    Med Clin (Barc); 2014 Sep; 143 Suppl 2():12-7. PubMed ID: 25437460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetic and pharmacodynamic evaluation of site-specific PEGylated glucagon-like peptide-1 analogs as flexible postprandial-glucose controllers.
    Chae SY; Chun YG; Lee S; Jin CH; Lee ES; Lee KC; Youn YS
    J Pharm Sci; 2009 Apr; 98(4):1556-67. PubMed ID: 18704955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond glycemic control: the effects of incretin hormones in type 2 diabetes.
    Martin CL
    Diabetes Educ; 2008; 34 Suppl 3():66S-72S. PubMed ID: 18525067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery.
    Chae SY; Jin CH; Shin HJ; Youn YS; Lee S; Lee KC
    Bioconjug Chem; 2008 Jan; 19(1):334-41. PubMed ID: 18078308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagon-like peptide-1 in type 2 diabetic db/db mice.
    Youn YS; Jeon JE; Chae SY; Lee S; Lee KC
    Diabetes Obes Metab; 2008 Apr; 10(4):343-6. PubMed ID: 18034839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.