BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 32511198)

  • 1. Applying Artificial Intelligence to Mitigate Effects of Patient Motion or Other Complicating Factors on Image Quality.
    Nguyen XV; Oztek MA; Nelakurti DD; Brunnquell CL; Mossa-Basha M; Haynor DR; Prevedello LM
    Top Magn Reson Imaging; 2020 Aug; 29(4):175-180. PubMed ID: 32511198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence-Driven Ultra-Fast Superresolution MRI: 10-Fold Accelerated Musculoskeletal Turbo Spin Echo MRI Within Reach.
    Lin DJ; Walter SS; Fritz J
    Invest Radiol; 2023 Jan; 58(1):28-42. PubMed ID: 36355637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic brain MRI motion artifact detection based on end-to-end deep learning is similarly effective as traditional machine learning trained on image quality metrics.
    Vakli P; Weiss B; Szalma J; Barsi P; Gyuricza I; Kemenczky P; Somogyi E; Nárai Á; Gál V; Hermann P; Vidnyánszky Z
    Med Image Anal; 2023 Aug; 88():102850. PubMed ID: 37263108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of image quality at CT and MRI using deep learning.
    Higaki T; Nakamura Y; Tatsugami F; Nakaura T; Awai K
    Jpn J Radiol; 2019 Jan; 37(1):73-80. PubMed ID: 30498876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging-State-of-the-Art and Challenges.
    Chen Z; Pawar K; Ekanayake M; Pain C; Zhong S; Egan GF
    J Digit Imaging; 2023 Feb; 36(1):204-230. PubMed ID: 36323914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexities of deep learning-based undersampled MR image reconstruction.
    Noordman CR; Yakar D; Bosma J; Simonis FFJ; Huisman H
    Eur Radiol Exp; 2023 Oct; 7(1):58. PubMed ID: 37789241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine-learning framework for automatic reference-free quality assessment in MRI.
    Küstner T; Gatidis S; Liebgott A; Schwartz M; Mauch L; Martirosian P; Schmidt H; Schwenzer NF; Nikolaou K; Bamberg F; Yang B; Schick F
    Magn Reson Imaging; 2018 Nov; 53():134-147. PubMed ID: 30036653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence in Head and Neck Imaging: A Glimpse into the Future.
    Werth K; Ledbetter L
    Neuroimaging Clin N Am; 2020 Aug; 30(3):359-368. PubMed ID: 32600636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning.
    Zaharchuk G
    Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2700-2707. PubMed ID: 31254036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
    Gong E; Pauly JM; Wintermark M; Zaharchuk G
    J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrospective correction of motion-affected MR images using deep learning frameworks.
    Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S
    Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians.
    Lin DJ; Johnson PM; Knoll F; Lui YW
    J Magn Reson Imaging; 2021 Apr; 53(4):1015-1028. PubMed ID: 32048372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications.
    D'Angelo T; Caudo D; Blandino A; Albrecht MH; Vogl TJ; Gruenewald LD; Gaeta M; Yel I; Koch V; Martin SS; Lenga L; Muscogiuri G; Sironi S; Mazziotti S; Booz C
    J Clin Ultrasound; 2022 Nov; 50(9):1414-1431. PubMed ID: 36069404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation and performance evaluation of simultaneous PET/MR whole-body imaging with continuous table motion.
    Braun H; Ziegler S; Lentschig MG; Quick HH
    J Nucl Med; 2014 Jan; 55(1):161-8. PubMed ID: 24232869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Artificial intelligence in image analysis-fundamentals and new developments].
    Pouly M; Koller T; Gottfrois P; Lionetti S
    Hautarzt; 2020 Sep; 71(9):660-668. PubMed ID: 32789670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techniques for minimizing sedation in pediatric MRI.
    Dong SZ; Zhu M; Bulas D
    J Magn Reson Imaging; 2019 Oct; 50(4):1047-1054. PubMed ID: 30869831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network Accelerated Motion Estimation and Reduction (NAMER): Convolutional neural network guided retrospective motion correction using a separable motion model.
    Haskell MW; Cauley SF; Bilgic B; Hossbach J; Splitthoff DN; Pfeuffer J; Setsompop K; Wald LL
    Magn Reson Med; 2019 Oct; 82(4):1452-1461. PubMed ID: 31045278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI.
    Mazurowski MA; Buda M; Saha A; Bashir MR
    J Magn Reson Imaging; 2019 Apr; 49(4):939-954. PubMed ID: 30575178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB).
    Liu J; Kocak M; Supanich M; Deng J
    Magn Reson Imaging; 2020 Sep; 71():69-79. PubMed ID: 32428549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.