BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 32511224)

  • 1. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes.
    Wheeler NJ; Heimark ZW; Airs PM; Mann A; Bartholomay LC; Zamanian M
    PLoS Biol; 2020 Jun; 18(6):e3000723. PubMed ID: 32511224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis.
    Gregory WF; Atmadja AK; Allen JE; Maizels RM
    Infect Immun; 2000 Jul; 68(7):4174-9. PubMed ID: 10858234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin.
    Harischandra H; Yuan W; Loghry HJ; Zamanian M; Kimber MJ
    PLoS Negl Trop Dis; 2018 Apr; 12(4):e0006438. PubMed ID: 29659599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an in vivo RNAi protocol to investigate gene function in the filarial nematode, Brugia malayi.
    Song C; Gallup JM; Day TA; Bartholomay LC; Kimber MJ
    PLoS Pathog; 2010 Dec; 6(12):e1001239. PubMed ID: 21203489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual RNAseq analyses at soma and germline levels reveal evolutionary innovations in the elephantiasis-agent Brugia malayi, and adaptation of its Wolbachia endosymbionts.
    Chevignon G; Foray V; Pérez-Jiménez MM; Libro S; Chung M; Foster JM; Landmann F
    PLoS Negl Trop Dis; 2021 Jan; 15(1):e0008935. PubMed ID: 33406151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An embryo-associated fatty acid-binding protein in the filarial nematode Brugia malayi.
    Michalski ML; Monsey JD; Cistola DP; Weil GJ
    Mol Biochem Parasitol; 2002; 124(1-2):1-10. PubMed ID: 12387845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target.
    Gallo KJ; Wheeler NJ; Elmi AM; Airs PM; Zamanian M
    Antimicrob Agents Chemother; 2023 Jan; 67(1):e0118822. PubMed ID: 36602350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bma-LAD-2, an Intestinal Cell Adhesion Protein, as a Potential Therapeutic Target for Lymphatic Filariasis.
    Flynn AF; Taylor RT; Pazgier ME; Bennuru S; Lindrose AR; Sterling SL; Morris CP; Gleeson BI; Maugel TK; Nutman TB; Mitre E
    mBio; 2022 Jun; 13(3):e0374221. PubMed ID: 35475643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genome of Brugia malayi - all worms are not created equal.
    Scott AL; Ghedin E
    Parasitol Int; 2009 Mar; 58(1):6-11. PubMed ID: 18952001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products.
    Moreno Y; Geary TG
    PLoS Negl Trop Dis; 2008; 2(10):e326. PubMed ID: 18958170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune responses of Aedes togoi, Anopheles paraliae and Anopheles lesteri against nocturnally subperiodic Brugia malayi microfilariae during migration from the midgut to the site of development.
    Dedkhad W; Christensen BM; Bartholomay LC; Joshi D; Hempolchom C; Saeung A
    Parasit Vectors; 2018 Sep; 11(1):528. PubMed ID: 30261926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3.
    Li BW; Rush AC; Mitreva M; Yin Y; Spiro D; Ghedin E; Weil GJ
    BMC Genomics; 2009 Jun; 10():267. PubMed ID: 19527522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of a Brugia malayi p38 MAP kinase ortholog (Bm-MPK1) in parasite anti-oxidative stress responses.
    Patel A; Chojnowski AN; Gaskill K; De Martini W; Goldberg RL; Siekierka JJ
    Mol Biochem Parasitol; 2011 Apr; 176(2):90-7. PubMed ID: 21185874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundant larval transcript-1 and -2 genes from Brugia malayi: diversity of genomic environments but conservation of 5' promoter sequences functional in Caenorhabditis elegans.
    Gomez-Escobar N; Gregory WF; Britton C; Murray L; Corton C; Hall N; Daub J; Blaxter ML; Maizels RM
    Mol Biochem Parasitol; 2002; 125(1-2):59-71. PubMed ID: 12467974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms.
    Li BW; Rush AC; Weil GJ
    Int J Parasitol Drugs Drug Resist; 2015 Dec; 5(3):100-9. PubMed ID: 26199859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti.
    Small ST; Tisch DJ; Zimmerman PA
    Infect Genet Evol; 2014 Dec; 28():33-43. PubMed ID: 25176600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections.
    Sreenivas K; Kalyanaraman H; Babu S; Narayanan RB
    Microb Pathog; 2017 Nov; 112():195-208. PubMed ID: 28942176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi.
    Aboobaker AA; Blaxter ML
    Mol Biochem Parasitol; 2003 Jun; 129(1):41-51. PubMed ID: 12798505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diethylcarbamazine elicits Ca
    Williams PDE; Kashyap SS; Robertson AP; Martin RJ
    Antimicrob Agents Chemother; 2023 Oct; 67(10):e0041923. PubMed ID: 37728916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic and molecular analysis of the effect of 20-hydroxyecdysone on the human filarial parasite Brugia malayi.
    Mhashilkar AS; Adapa SR; Jiang RH; Williams SA; Zaky W; Slatko BE; Luck AN; Moorhead AR; Unnasch TR
    Int J Parasitol; 2016 May; 46(5-6):333-41. PubMed ID: 26896576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.