These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 32511362)
21. An Engineered Receptor-Binding Domain Improves the Immunogenicity of Multivalent SARS-CoV-2 Vaccines. Guo Y; He W; Mou H; Zhang L; Chang J; Peng S; Ojha A; Tavora R; Parcells MS; Luo G; Li W; Zhong G; Choe H; Farzan M; Quinlan BD mBio; 2021 May; 12(3):. PubMed ID: 33975938 [TBL] [Abstract][Full Text] [Related]
22. Dramatic Differences between the Structural Susceptibility of the S1 Pre- and S2 Postfusion States of the SARS-CoV-2 Spike Protein to External Electric Fields Revealed by Molecular Dynamics Simulations. Lipskij A; Arbeitman C; Rojas P; Ojeda-May P; Garcia ME Viruses; 2023 Dec; 15(12):. PubMed ID: 38140646 [TBL] [Abstract][Full Text] [Related]
23. Molecular mechanism study of the structural regulation of the N-terminal domain binding antibody on the receptor binding domain of SARS-CoV-2. Liu H; Tian Z; Yuan S; Zhou S Phys Chem Chem Phys; 2023 Jun; 25(22):15237-15247. PubMed ID: 37249436 [TBL] [Abstract][Full Text] [Related]
24. Molecular Dynamics Studies on the Structural Characteristics for the Stability Prediction of SARS-CoV-2. Choi KE; Kim JM; Rhee J; Park AK; Kim EJ; Kang NS Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445414 [TBL] [Abstract][Full Text] [Related]
25. Insight into free energy and dynamic cross-correlations of residue for binding affinity of antibody and receptor binding domain SARS-CoV-2. Chong WL; Saparpakorn P; Sangma C; Lee VS; Hannongbua S Heliyon; 2023 Jan; 9(1):e12667. PubMed ID: 36618128 [TBL] [Abstract][Full Text] [Related]
27. The SARS-CoV-2 spike N-terminal domain engages 9- Tomris I; Unione L; Nguyen L; Zaree P; Bouwman KM; Liu L; Li Z; Fok JA; Ríos Carrasco M; van der Woude R; Kimpel ALM; Linthorst MW; Verpalen ECJM; Caniels TG; Sanders RW; Heesters BA; Pieters RJ; Jiménez-Barbero J; Klassen JS; Boons GJ; de Vries RP bioRxiv; 2022 Oct; ():. PubMed ID: 36263070 [TBL] [Abstract][Full Text] [Related]
28. Exploring the Regulatory Function of the Li Y; Wang T; Zhang J; Shao B; Gong H; Wang Y; He X; Liu S; Liu TY Adv Theory Simul; 2021 Oct; 4(10):2100152. PubMed ID: 34901736 [TBL] [Abstract][Full Text] [Related]
29. Site-Specific Glycosylation Patterns of the SARS-CoV-2 Spike Protein Derived From Recombinant Protein and Viral WA1 and D614G Strains. Tian Y; Parsons LM; Jankowska E; Cipollo JF Front Chem; 2021; 9():767448. PubMed ID: 34869209 [TBL] [Abstract][Full Text] [Related]
30. 1,2,3,4,6-Pentagalloyl Glucose, a RBD-ACE2 Binding Inhibitor to Prevent SARS-CoV-2 Infection. Chen RH; Yang LJ; Hamdoun S; Chung SK; Lam CW; Zhang KX; Guo X; Xia C; Law BYK; Wong VKW Front Pharmacol; 2021; 12():634176. PubMed ID: 33897423 [TBL] [Abstract][Full Text] [Related]
31. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Cao W; Dong C; Kim S; Hou D; Tai W; Du L; Im W; Zhang XF Biophys J; 2021 Mar; 120(6):1011-1019. PubMed ID: 33607086 [TBL] [Abstract][Full Text] [Related]
32. Screening of inhibitors against SARS-CoV-2 spike protein and their capability to block the viral entry mechanism: A viroinformatics study. Farouk AE; Baig MH; Khan MI; Park T; Alotaibi SS; Dong JJ Saudi J Biol Sci; 2021 Jun; 28(6):3262-3269. PubMed ID: 33654454 [TBL] [Abstract][Full Text] [Related]
34. Computational decomposition reveals reshaping of the SARS-CoV-2-ACE2 interface among viral variants expressing the N501Y mutation. Socher E; Conrad M; Heger L; Paulsen F; Sticht H; Zunke F; Arnold P J Cell Biochem; 2021 Dec; 122(12):1863-1872. PubMed ID: 34516024 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of molecular interaction, physicochemical parameters and conserved pattern of SARS-CoV-2 Spike RBD and hACE2: in silico and molecular dynamics approach. Chakraborty C; Sharma AR; Mallick B; Bhattacharya M; Sharma G; Lee SS Eur Rev Med Pharmacol Sci; 2021 Feb; 25(3):1708-1723. PubMed ID: 33629340 [TBL] [Abstract][Full Text] [Related]
36. All-Atom Simulations and Free-Energy Calculations of Antibodies Bound to the Spike Protein of SARS-CoV-2: The Binding Strength and Multivalent Hydrogen-Bond Interactions. Lee H Adv Theory Simul; 2021 May; 4(5):2100012. PubMed ID: 34230907 [TBL] [Abstract][Full Text] [Related]
37. Computational design and modeling of nanobodies toward SARS-CoV-2 receptor binding domain. Yang J; Zhang Z; Yang F; Zhang H; Wu H; Zhu F; Xue W Chem Biol Drug Des; 2021 Jul; 98(1):1-18. PubMed ID: 33894099 [TBL] [Abstract][Full Text] [Related]
38. Computational analysis of interior mutations of SARS-CoV-2 Spike protein suggest a balance of protein stability and S2: S1 separation propensity. Li ZL; Buck M Comput Struct Biotechnol J; 2022; 20():6078-6086. PubMed ID: 36373151 [TBL] [Abstract][Full Text] [Related]
39. Biomechanical Characterization of SARS-CoV-2 Spike RBD and Human ACE2 Protein-Protein Interaction. Cao W; Dong C; Kim S; Hou D; Tai W; Du L; Im W; Zhang XF bioRxiv; 2020 Jul; ():. PubMed ID: 32766576 [TBL] [Abstract][Full Text] [Related]
40. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1. Qian Z; Ou X; Góes LG; Osborne C; Castano A; Holmes KV; Dominguez SR J Virol; 2015 Sep; 89(17):8816-27. PubMed ID: 26085157 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]