These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 3251170)
1. Clinical and ultrastructural observations of maturing human frontal cortex. Part I (Biopsy material of hydrocephalic infants). Glees P; Voth D Neurosurg Rev; 1988; 11(3-4):273-8. PubMed ID: 3251170 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructure of human cerebral macroglia and microglia: maturing and hydrocephalic frontal cortex. Glees P; Hasan M Neurosurg Rev; 1990; 13(3):231-42. PubMed ID: 2398953 [TBL] [Abstract][Full Text] [Related]
3. Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Hasan M; Glees P Arch Ital Anat Embriol; 1990; 95(1):17-26. PubMed ID: 2275598 [TBL] [Abstract][Full Text] [Related]
4. Fine structural features of the cerebral microvasculature in hydrocephalic human infants: correlated clinical observations. Glees P; Hasan M; Voth D; Schwarz M Neurosurg Rev; 1989; 12(4):315-21. PubMed ID: 2594209 [TBL] [Abstract][Full Text] [Related]
5. The fine structure of human cerebral perivascular pericytes and juxtavascular phagocytes: their possible role in hydrocephalic edema resolution. Hasan M; Glees P J Hirnforsch; 1990; 31(2):237-49. PubMed ID: 2358665 [TBL] [Abstract][Full Text] [Related]
6. Ultrastructural observations on transendothelial transport from extracellular neuronal spaces towards the vascular lumina of cerebral capillaries of hydrocephalic human biopsies. Glees P; Voth D; Schwarz M Eur J Pediatr Surg; 1992 Dec; 2 Suppl 1():43. PubMed ID: 1489754 [No Abstract] [Full Text] [Related]
7. Ultrastructural alterations of Golgi apparatus in the nerve cells of cerebral cortex in human hydrocephalus. A qualitative study using cortical biopsies. Castejon OJ; Diaz M; Valero C Scanning Microsc; 1994 Mar; 8(1):89-96. PubMed ID: 7973503 [TBL] [Abstract][Full Text] [Related]
8. Ultrastructural changes in the deep cortical pyramidal cells of infant rats with inherited hydrocephalus and the effect of shunt treatment. Boillat CA; Jones HC; Kaiser GL; Harris NG Exp Neurol; 1997 Oct; 147(2):377-88. PubMed ID: 9344562 [TBL] [Abstract][Full Text] [Related]
9. The frontal and temporal horn ratio to assess dimension of paediatric hydrocephalus: a comparative volumetric study. Antes S; Welsch M; Kiefer M; Gläser M; Körner H; Eymann R Acta Neurochir Suppl; 2013; 118():211-4. PubMed ID: 23564134 [TBL] [Abstract][Full Text] [Related]
10. Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method. Aoyama Y; Kinoshita Y; Yokota A; Hamada T J Neurosurg; 2006 May; 104(5 Suppl):332-9. PubMed ID: 16848091 [TBL] [Abstract][Full Text] [Related]
11. Submicroscopic pathology of human and experimental hydrocephalic cerebral cortex. Castejón OJ Folia Neuropathol; 2010; 48(3):159-74. PubMed ID: 20925000 [TBL] [Abstract][Full Text] [Related]
12. Cerebral biopsy and assessment of brain damage in hydrocephalus. Weller RO; Williams BN Arch Dis Child; 1975 Oct; 50(10):763-8. PubMed ID: 1236565 [TBL] [Abstract][Full Text] [Related]
13. Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement. Hale PM; McAllister JP; Katz SD; Wright LC; Lovely TJ; Miller DW; Wolfson BJ; Salotto AG; Shroff DV Neurosurgery; 1992 Dec; 31(6):1085-96; discussion 1096. PubMed ID: 1470319 [TBL] [Abstract][Full Text] [Related]
14. The microstructure of cortical neuropil before and after decompression in experimental infantile hydrocephalus. Kriebel RM; Shah AB; McAllister JP Exp Neurol; 1993 Jan; 119(1):89-98. PubMed ID: 8432354 [TBL] [Abstract][Full Text] [Related]
15. Transmission electron microscope study of human hydrocephalic cerebral cortex. Castejon OJ J Submicrosc Cytol Pathol; 1994 Jan; 26(1):29-39. PubMed ID: 8149330 [TBL] [Abstract][Full Text] [Related]
16. Volumetric brain analysis in neurosurgery: Part 2. Brain and CSF volumes discriminate neurocognitive outcomes in hydrocephalus. Mandell JG; Kulkarni AV; Warf BC; Schiff SJ J Neurosurg Pediatr; 2015 Feb; 15(2):125-32. PubMed ID: 25431901 [TBL] [Abstract][Full Text] [Related]
17. [Cerebral cortex in normal pressure hydrocephalus: an electron microscopy study (author's transl)]. Foncin JF; Redondo A; Le Beau J Acta Neuropathol; 1976 Apr; 34(4):353-7. PubMed ID: 1274526 [TBL] [Abstract][Full Text] [Related]
18. Neurofibrillary changes in the cerebral cortex of a patient with subacute sclerosing panencephalitis (SSPE). Paula-Barbosa MM; Brito R; Silva CA; Faria R; Cruz C Acta Neuropathol; 1979 Nov; 48(2):157-60. PubMed ID: 506699 [TBL] [Abstract][Full Text] [Related]
19. Frontal and temporal horn ratio: a valid and reliable index to determine ventricular size in paediatric hydrocephalus patients? Antes S; Kiefer M; Schmitt M; Lechtenfeld M; Geipel M; Eymann R Acta Neurochir Suppl; 2012; 114():227-30. PubMed ID: 22327698 [TBL] [Abstract][Full Text] [Related]
20. Metabolite changes in the cerebral cortex of treated and untreated infant hydrocephalic rats studied using in vitro 31P-NMR spectroscopy. Harris NG; Plant HD; Briggs RW; Jones HC J Neurochem; 1996 Nov; 67(5):2030-8. PubMed ID: 8863510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]