These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32511953)

  • 1. Chronic defects in intraspinal mechanisms of spike encoding by spinal motoneurons following chemotherapy.
    Housley SN; Nardelli P; Powers RK; Rich MM; Cope TC
    Exp Neurol; 2020 Sep; 331():113354. PubMed ID: 32511953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats.
    Harvey PJ; Li Y; Li X; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1141-57. PubMed ID: 16282206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural circuit mechanisms of sensorimotor disability in cancer treatment.
    Housley SN; Nardelli P; Rotterman TM; Cope TC
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34911753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury.
    Harvey PJ; Li X; Li Y; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1158-70. PubMed ID: 16707714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous monoamine receptor activation is essential for enabling persistent sodium currents and repetitive firing in rat spinal motoneurons.
    Harvey PJ; Li X; Li Y; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1171-86. PubMed ID: 16760346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed mode oscillations in mouse spinal motoneurons arise from a low excitability state.
    Iglesias C; Meunier C; Manuel M; Timofeeva Y; Delestrée N; Zytnicki D
    J Neurosci; 2011 Apr; 31(15):5829-40. PubMed ID: 21490224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro.
    Bennett DJ; Li Y; Siu M
    J Neurophysiol; 2001 Oct; 86(4):1955-71. PubMed ID: 11600653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation of the responses of human motoneurons to composite 1A EPSPS: effects of background firing rate.
    Jones KE; Bawa P
    J Neurophysiol; 1997 Jan; 77(1):405-20. PubMed ID: 9120581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine.
    Lee RH; Heckman CJ
    J Neurophysiol; 1999 May; 81(5):2164-74. PubMed ID: 10322057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced motor neuron excitability is an important contributor to weakness in a rat model of sepsis.
    Nardelli P; Vincent JA; Powers R; Cope TC; Rich MM
    Exp Neurol; 2016 Aug; 282():1-8. PubMed ID: 27118372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperexcitability and plasticity induced by sustained hypoxia on rectus abdominis motoneurons.
    da Silva MP; Moraes DJA; Bonagamba LGH; Mecawi AS; Varanda WA; Machado BH
    J Physiol; 2019 Apr; 597(7):1935-1956. PubMed ID: 30747446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike threshold dynamics in spinal motoneurons during scratching and swimming.
    Grigonis R; Alaburda A
    J Physiol; 2017 Sep; 595(17):5843-5855. PubMed ID: 28653361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imbalanced Subthreshold Currents Following Sepsis and Chemotherapy: A Shared Mechanism Offering a New Therapeutic Target?
    Rich MM; Housley SN; Nardelli P; Powers RK; Cope TC
    Neuroscientist; 2022 Apr; 28(2):103-120. PubMed ID: 33345706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of motoneuronal firing behavior after spinal cord injury using intraspinal microstimulation current pulses: a modeling study.
    Elbasiouny SM; Mushahwar VK
    J Appl Physiol (1985); 2007 Jul; 103(1):276-86. PubMed ID: 17234800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal inhibition and motor function in adults with spastic cerebral palsy.
    Condliffe EG; Jeffery DT; Emery DJ; Gorassini MA
    J Physiol; 2016 May; 594(10):2691-705. PubMed ID: 26842905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer Exacerbates Chemotherapy-Induced Sensory Neuropathy.
    Housley SN; Nardelli P; Carrasco DI; Rotterman TM; Pfahl E; Matyunina LV; McDonald JF; Cope TC
    Cancer Res; 2020 Jul; 80(13):2940-2955. PubMed ID: 32345673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External loops of human premotor spinal oscillators identified by simultaneous measurements of interspike intervals and phase relations.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():95-119. PubMed ID: 8934199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptations of motoneuron properties after weight-lifting training in rats.
    Krutki P; Mrówczyński W; Bączyk M; Łochyński D; Celichowski J
    J Appl Physiol (1985); 2017 Sep; 123(3):664-673. PubMed ID: 28596267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of the late phase of spike frequency adaptation in cat spinal motoneurons during fictive locomotion.
    Brownstone RM; Krawitz S; Jordan LM
    J Neurophysiol; 2011 Mar; 105(3):1045-50. PubMed ID: 21177992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex impairment of IA muscle proprioceptors following traumatic or neurotoxic injury.
    Vincent JA; Nardelli P; Gabriel HM; Deardorff AS; Cope TC
    J Anat; 2015 Aug; 227(2):221-30. PubMed ID: 26047324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.