These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32512440)
41. Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: characterization, properties and 4-chlorophenol removal application. Neppolian B; Wang Q; Jung H; Choi H Ultrason Sonochem; 2008 Apr; 15(4):649-658. PubMed ID: 18024153 [TBL] [Abstract][Full Text] [Related]
42. Characterization and photocatalytic activity of Ag-Cu/TiO2 nanoparticles prepared by sol-gel method. Behnajady MA; Eskandarloo H J Nanosci Nanotechnol; 2013 Jan; 13(1):548-53. PubMed ID: 23646771 [TBL] [Abstract][Full Text] [Related]
43. Characterisation of particles within and aerosols produced by nano-containing consumer spray products. Laycock A; Wright MD; Römer I; Buckley A; Smith R Atmos Environ X; 2020 Dec; 8():100079. PubMed ID: 33392499 [TBL] [Abstract][Full Text] [Related]
44. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2. Ozmen M; Güngördü A; Erdemoglu S; Ozmen N; Asilturk M Aquat Toxicol; 2015 Aug; 165():144-53. PubMed ID: 26037099 [TBL] [Abstract][Full Text] [Related]
45. Photocatalytic properties of TiO2 and TiO2/Pt: a sol-precipitation, sonochemical and hydrothermal approach. Žunič V; Vukomanović M; Škapin SD; Suvorov D; Kovač J Ultrason Sonochem; 2014 Jan; 21(1):367-75. PubMed ID: 23831420 [TBL] [Abstract][Full Text] [Related]
46. [Preparation, spectral analysis and photocatalytic activities of TiO2 films codoped with iron and nitrogen]. Liu WB; Deng J; Zhao YB; Xu JS; Zhou L Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1394-7. PubMed ID: 19650498 [TBL] [Abstract][Full Text] [Related]
47. Ultrasound assisted synthesis of doped TiO2 nano-particles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent. Shirsath SR; Pinjari DV; Gogate PR; Sonawane SH; Pandit AB Ultrason Sonochem; 2013 Jan; 20(1):277-86. PubMed ID: 22749748 [TBL] [Abstract][Full Text] [Related]
48. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
49. Structure and Property of Nano-TiO2 Doped with Ag+ Membrane Photocatalyst. Liu F; He T; Cao Q; Xu Y; Liu W; Zhou W J Nanosci Nanotechnol; 2015 Apr; 15(4):2726-32. PubMed ID: 26353486 [TBL] [Abstract][Full Text] [Related]
50. Contamination and release of nanomaterials associated with the use of personal protective clothing. Tsai CS Ann Occup Hyg; 2015 May; 59(4):491-503. PubMed ID: 25582117 [TBL] [Abstract][Full Text] [Related]
51. Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of chromium(VI). Sun Z; Zheng L; Zheng S; Frost RL J Colloid Interface Sci; 2013 Aug; 404():102-9. PubMed ID: 23711657 [TBL] [Abstract][Full Text] [Related]
52. Structural and photocatalytic studies of Mn doped TiO2 nanoparticles. Chauhan R; Kumar A; Chaudhary RP Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():256-64. PubMed ID: 22958977 [TBL] [Abstract][Full Text] [Related]
53. Ultrasonic spray pyrolysis synthesis of reduced graphene oxide/anatase TiO Park JA; Yang B; Lee J; Kim IG; Kim JH; Choi JW; Park HD; Nah IW; Lee SH Chemosphere; 2018 Jan; 191():738-746. PubMed ID: 29078195 [TBL] [Abstract][Full Text] [Related]
54. Field Evaluation of N95 Filtering Facepiece Respirators on Construction Jobsites for Protection against Airborne Ultrafine Particles. Adhikari A; Mitra A; Rashidi A; Ekpo I; Schwartz J; Doehling J Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205526 [TBL] [Abstract][Full Text] [Related]
55. Construction of amorphous TiO₂/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. Wang XJ; Yang WY; Li FT; Zhao J; Liu RH; Liu SJ; Li B J Hazard Mater; 2015 Jul; 292():126-36. PubMed ID: 25814184 [TBL] [Abstract][Full Text] [Related]
56. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. Mu J; Chen B; Zhang M; Guo Z; Zhang P; Zhang Z; Sun Y; Shao C; Liu Y ACS Appl Mater Interfaces; 2012 Jan; 4(1):424-30. PubMed ID: 22148464 [TBL] [Abstract][Full Text] [Related]
57. A photocatalytic reduction method for the preparation of TiO2 nanobelt supported noble metals (Ag, Au). Wang Y; Du G; Liu H; Liu D; Qin S; Wang J; Tao X; Jiang M; Wang ZL J Nanosci Nanotechnol; 2009 Mar; 9(3):2119-23. PubMed ID: 19435090 [TBL] [Abstract][Full Text] [Related]
58. Microwave Treated Bentonite Clay Based TiO2 Composites: An Efficient Photocatalyst for Rapid Degradation of Methylene Blue. Mishra A; Sharma M; Mehta A; Basu S J Nanosci Nanotechnol; 2017 Feb; 17(2):1149-155. PubMed ID: 29676881 [TBL] [Abstract][Full Text] [Related]
59. Combining NSAM and CPC concentrations to determine airborne nanoparticle count median diameter: Application to various laboratory and workplace aerosols. Bau S; Payet R; Toussaint A; Witschger O; Todea AM; Monz C; Asbach C J Occup Environ Hyg; 2018 Jun; 15(6):492-501. PubMed ID: 29580178 [TBL] [Abstract][Full Text] [Related]
60. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell. Park GC; Li ZY; Yang OB J Nanosci Nanotechnol; 2017 Apr; 17(4):2728-731. PubMed ID: 29664592 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]