BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32512445)

  • 1. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite.
    Cai X; Yin N; Wang P; Du H; Liu X; Cui Y
    J Hazard Mater; 2020 Nov; 398():122886. PubMed ID: 32512445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. As(III) removal and speciation of Fe (Oxyhydr)oxides during simultaneous oxidation of As(III) and Fe(II).
    Han X; Song J; Li YL; Jia SY; Wang WH; Huang FG; Wu SH
    Chemosphere; 2016 Mar; 147():337-44. PubMed ID: 26774297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions.
    Liu X; Cai X; Wang P; Yin N; Fan C; Chang X; Huang X; Du X; Wang S; Cui Y
    J Hazard Mater; 2023 Mar; 445():130602. PubMed ID: 37055999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite.
    Catalano JG; Luo Y; Otemuyiwa B
    Environ Sci Technol; 2011 Oct; 45(20):8826-33. PubMed ID: 21899306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways.
    Zhao Z; Meng Y; Yuan Q; Wang Y; Lin L; Liu W; Luan F
    Sci Total Environ; 2021 Apr; 763():144613. PubMed ID: 33383508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.
    Song J; Jia SY; Yu B; Wu SH; Han X
    J Hazard Mater; 2015 Aug; 294():70-9. PubMed ID: 25855615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates.
    ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R
    Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling microbial arsenite oxidation and mobilization in arsenite-adsorbed iron minerals: The Influence of pH conditions and mineralogical composition.
    Cai X; Zhang Z; Yin N; Lu W; Du H; Yang M; Cui L; Chen S; Cui Y
    J Hazard Mater; 2022 Jul; 433():128778. PubMed ID: 35358812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrous Iron Oxidation under Varying pO
    Chen C; Thompson A
    Environ Sci Technol; 2018 Jan; 52(2):597-606. PubMed ID: 29192502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of continuously produced Fe(II)/Fe(III)/As(V) co-precipitates under periodic exposure to reducing agents.
    Doerfelt C; Feldmann T; Daenzer R; Demopoulos GP
    Chemosphere; 2015 Nov; 138():239-46. PubMed ID: 26086809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe/S oxidation-coupled arsenic speciation transformation mediated by AMD enrichment culture under different pH conditions.
    Zhou YH; Huang WX; Nie ZY; Liu HC; Liu Y; Wang C; Xia JL; Shu WS
    J Environ Sci (China); 2024 Mar; 137():681-700. PubMed ID: 37980051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution.
    Schulz K; ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2022 May; 56(9):5929-5938. PubMed ID: 35435661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing Fe (II)-induced mineralization pathways of ferrihydrite.
    Hansel CM; Benner SG; Fendorf S
    Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of arsenic during microbial reduction of biogenic versus Abiogenic As-Fe(III)-mineral coprecipitates.
    Muehe EM; Scheer L; Daus B; Kappler A
    Environ Sci Technol; 2013 Aug; 47(15):8297-307. PubMed ID: 23806105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.
    ThomasArrigo LK; Mikutta C; Byrne J; Kappler A; Kretzschmar R
    Environ Sci Technol; 2017 Jun; 51(12):6897-6907. PubMed ID: 28590131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III).
    Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB
    Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.