These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 32512445)
1. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite. Cai X; Yin N; Wang P; Du H; Liu X; Cui Y J Hazard Mater; 2020 Nov; 398():122886. PubMed ID: 32512445 [TBL] [Abstract][Full Text] [Related]
2. The pH-dependent role of different manganese oxides in the fate of arsenic during microbial reduction of arsenate-bearing goethite. Liu X; Cai X; Yin N; Huang X; Wang P; Basheer MZ; Fan C; Chang X; Hu Z; Sun G; Cui Y Water Res; 2024 Sep; 261():121988. PubMed ID: 38986281 [TBL] [Abstract][Full Text] [Related]
3. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118 [TBL] [Abstract][Full Text] [Related]
4. As(III) removal and speciation of Fe (Oxyhydr)oxides during simultaneous oxidation of As(III) and Fe(II). Han X; Song J; Li YL; Jia SY; Wang WH; Huang FG; Wu SH Chemosphere; 2016 Mar; 147():337-44. PubMed ID: 26774297 [TBL] [Abstract][Full Text] [Related]
5. Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions. Liu X; Cai X; Wang P; Yin N; Fan C; Chang X; Huang X; Du X; Wang S; Cui Y J Hazard Mater; 2023 Mar; 445():130602. PubMed ID: 37055999 [TBL] [Abstract][Full Text] [Related]
6. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite. Catalano JG; Luo Y; Otemuyiwa B Environ Sci Technol; 2011 Oct; 45(20):8826-33. PubMed ID: 21899306 [TBL] [Abstract][Full Text] [Related]
7. Antimony and arsenic partitioning during Fe Karimian N; Johnston SG; Burton ED Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031 [TBL] [Abstract][Full Text] [Related]
8. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways. Zhao Z; Meng Y; Yuan Q; Wang Y; Lin L; Liu W; Luan F Sci Total Environ; 2021 Apr; 763():144613. PubMed ID: 33383508 [TBL] [Abstract][Full Text] [Related]
9. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate. Song J; Jia SY; Yu B; Wu SH; Han X J Hazard Mater; 2015 Aug; 294():70-9. PubMed ID: 25855615 [TBL] [Abstract][Full Text] [Related]
10. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates. ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468 [TBL] [Abstract][Full Text] [Related]
11. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
12. Controlling microbial arsenite oxidation and mobilization in arsenite-adsorbed iron minerals: The Influence of pH conditions and mineralogical composition. Cai X; Zhang Z; Yin N; Lu W; Du H; Yang M; Cui L; Chen S; Cui Y J Hazard Mater; 2022 Jul; 433():128778. PubMed ID: 35358812 [TBL] [Abstract][Full Text] [Related]
13. Ferrous Iron Oxidation under Varying pO Chen C; Thompson A Environ Sci Technol; 2018 Jan; 52(2):597-606. PubMed ID: 29192502 [TBL] [Abstract][Full Text] [Related]
14. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
15. Stability of continuously produced Fe(II)/Fe(III)/As(V) co-precipitates under periodic exposure to reducing agents. Doerfelt C; Feldmann T; Daenzer R; Demopoulos GP Chemosphere; 2015 Nov; 138():239-46. PubMed ID: 26086809 [TBL] [Abstract][Full Text] [Related]
16. Fe/S oxidation-coupled arsenic speciation transformation mediated by AMD enrichment culture under different pH conditions. Zhou YH; Huang WX; Nie ZY; Liu HC; Liu Y; Wang C; Xia JL; Shu WS J Environ Sci (China); 2024 Mar; 137():681-700. PubMed ID: 37980051 [TBL] [Abstract][Full Text] [Related]
17. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution. Schulz K; ThomasArrigo LK; Kaegi R; Kretzschmar R Environ Sci Technol; 2022 May; 56(9):5929-5938. PubMed ID: 35435661 [TBL] [Abstract][Full Text] [Related]
18. Competing Fe (II)-induced mineralization pathways of ferrihydrite. Hansel CM; Benner SG; Fendorf S Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641 [TBL] [Abstract][Full Text] [Related]
19. Fate of arsenic during microbial reduction of biogenic versus Abiogenic As-Fe(III)-mineral coprecipitates. Muehe EM; Scheer L; Daus B; Kappler A Environ Sci Technol; 2013 Aug; 47(15):8297-307. PubMed ID: 23806105 [TBL] [Abstract][Full Text] [Related]
20. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study. ThomasArrigo LK; Mikutta C; Byrne J; Kappler A; Kretzschmar R Environ Sci Technol; 2017 Jun; 51(12):6897-6907. PubMed ID: 28590131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]