These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32512452)

  • 1. Research on X-ray shielding performance of wearable Bi/Ce-natural leather composite materials.
    Li Q; Wang Y; Xiao X; Zhong R; Liao J; Guo J; Liao X; Shi B
    J Hazard Mater; 2020 Nov; 398():122943. PubMed ID: 32512452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lightweight and Flexible Bi@Bi-La Natural Leather Composites with Superb X-ray Radiation Shielding Performance and Low Secondary Radiation.
    Li Q; Zhong R; Xiao X; Liao J; Liao X; Shi B
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):54117-54126. PubMed ID: 33201659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced X-ray Shielding Materials Enabled by the Coordination of Well-Dispersed High Atomic Number Elements in Natural Leather.
    Wang Y; Ding P; Xu H; Li Q; Guo J; Liao X; Shi B
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19916-19926. PubMed ID: 32237713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible stretchable low-energy X-ray (30-80 keV) radiation shielding material: Low-melting-point Ga
    Wu J; Hu J; Wang K; Zhai Y; Wang Z; Feng Y; Fan H; Wang K; Duan Y
    Appl Radiat Isot; 2023 Feb; 192():110603. PubMed ID: 36508958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralight and Superelastic Gd
    Xu L; Huang L; Yu J; Si Y; Ding B
    Nano Lett; 2022 Nov; 22(21):8711-8718. PubMed ID: 36315062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles.
    Liu C; Wang X; Huang X; Liao X; Shi B
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14036-14044. PubMed ID: 29611417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism.
    Li Z; Zhou W; Zhang X; Gao Y; Guo S
    Sci Rep; 2021 Feb; 11(1):4384. PubMed ID: 33623062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shielding performance of multi-metal nanoparticle composites for diagnostic radiology: an MCNPX and Geant4 study.
    Asadpour N; Malekzadeh R; Rajabpour S; Refahi S; Mehnati P; Shanei A
    Radiol Phys Technol; 2023 Mar; 16(1):57-68. PubMed ID: 36562940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Stability and X-ray Attenuation Studies on
    Jayakumar S; Saravanan T; Philip J
    J Nanosci Nanotechnol; 2018 Jun; 18(6):3969-3981. PubMed ID: 29442733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicomponent X-ray Shielding Using Sulfated Cerium Oxide and Bismuth Halide Composites.
    Mahalingam S; Kwon DS; Kang SG; Kim J
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Prepared Lead-Free Polymer Nanocomposites for X- and Gamma-ray Shielding in Healthcare Applications.
    Alsaab AH; Zeghib S
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-ray Shielding.
    Alshahri S; Alsuhybani M; Alosime E; Almurayshid M; Alrwais A; Alotaibi S
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34577982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians.
    McCaffrey JP; Tessier F; Shen H
    Med Phys; 2012 Jul; 39(7):4537-46. PubMed ID: 22830785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray Shielding, Mechanical, Physical, and Water Absorption Properties of Wood/PVC Composites Containing Bismuth Oxide.
    Poltabtim W; Wimolmala E; Markpin T; Sombatsompop N; Rosarpitak V; Saenboonruang K
    Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Micro- and Nano-Bismuth(III) Oxide Coated Fabric for Environmentally Friendly X-Ray Shielding Materials.
    Kaewpirom S; Chousangsuntorn K; Boonsang S
    ACS Omega; 2022 Aug; 7(32):28248-28257. PubMed ID: 35990472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy alloy based on tungsten and bismuth: fabrication, crystal structure, morphology, and shielding efficiency against gamma-radiation.
    Tishkevich DI; Rotkovich AA; German SA; Zhaludkevich AL; Vershinina TN; Bondaruk AA; Razanau IU; Dong M; Sayyed MI; Leonchik SV; Zubar T; Silibin MV; Trukhanov SV; Trukhanov AV
    RSC Adv; 2023 Aug; 13(35):24491-24498. PubMed ID: 37588974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi
    Xu L; Zhao J; Huang L; Yu J; Si Y; Ding B
    ACS Nano; 2023 Dec; 17(23):24080-24089. PubMed ID: 38014842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology.
    Malekzadeh R; Mehnati P; Sooteh MY; Mesbahi A
    Radiol Phys Technol; 2019 Sep; 12(3):325-334. PubMed ID: 31385155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically Durable, Highly Conductive, and Anticorrosive Composite Fabrics with Excellent Self-Cleaning Performance for High-Efficiency Electromagnetic Interference Shielding.
    Luo J; Wang L; Huang X; Li B; Guo Z; Song X; Lin L; Tang LC; Xue H; Gao J
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10883-10894. PubMed ID: 30844225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative X-ray Shielding Properties of Single-Layered and Multi-Layered Bi
    Thumwong A; Darachai J; Saenboonruang K
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.