BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32512556)

  • 1. Directional radiation and photothermal effect enhanced control of 2D excitonic emission based on germanium nanoparticles.
    Yan J; Yu P; Ma C; Huang Y; Yang G
    Nanotechnology; 2020 Sep; 31(38):385201. PubMed ID: 32512556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas.
    Lepeshov S; Krasnok A; Alù A
    Nanotechnology; 2019 Jun; 30(25):254004. PubMed ID: 30844774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators.
    Verre R; Baranov DG; Munkhbat B; Cuadra J; Käll M; Shegai T
    Nat Nanotechnol; 2019 Jul; 14(7):679-683. PubMed ID: 31061517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal dichalcogenide nanospheres for high-refractive-index nanophotonics and biomedical theranostics.
    Tselikov GI; Ermolaev GA; Popov AA; Tikhonowski GV; Panova DA; Taradin AS; Vyshnevyy AA; Syuy AV; Klimentov SM; Novikov SM; Evlyukhin AB; Kabashin AV; Arsenin AV; Novoselov KS; Volkov VS
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2208830119. PubMed ID: 36122203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Tuning of Mie Resonances in the Visible Spectrum.
    Lu L; Dong Z; Tijiptoharsono F; Ng RJH; Wang H; Rezaei SD; Wang Y; Leong HS; Lim PC; Yang JKW; Simpson RE
    ACS Nano; 2021 Dec; 15(12):19722-19732. PubMed ID: 34881865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Germanium Metasurfaces with Lattice Kerker Effect in Near-Infrared Photodetectors.
    Zhou ZX; Ye MJ; Yu MW; Yang JH; Su KL; Yang CC; Lin CY; Babicheva VE; Timofeev IV; Chen KP
    ACS Nano; 2022 Apr; 16(4):5994-6001. PubMed ID: 35191683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Tuning of Spontaneous Emission by Mie-Resonant Dielectric Metasurfaces.
    Bohn J; Bucher T; Chong KE; Komar A; Choi DY; Neshev DN; Kivshar YS; Pertsch T; Staude I
    Nano Lett; 2018 Jun; 18(6):3461-3465. PubMed ID: 29709198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanophotonics with 2D transition metal dichalcogenides [Invited].
    Krasnok A; Lepeshov S; Alú A
    Opt Express; 2018 Jun; 26(12):15972-15994. PubMed ID: 30114850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of exciton emission in WS
    Yan J; Zheng Z; Lou Z; Li J; Mao B; Li B
    Nanoscale Horiz; 2020 Sep; 5(10):1368-1377. PubMed ID: 32608428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Strong Coupling in Transition Metal Dichalcogenide Nanowires.
    Li J; Yao K; Huang Y; Fang J; Kollipara PS; Fan DE; Zheng Y
    Adv Mater; 2022 Aug; 34(34):e2200656. PubMed ID: 35793202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres.
    Fang J; Wang M; Yao K; Zhang T; Krasnok A; Jiang T; Choi J; Kahn E; Korgel BA; Terrones M; Li X; Alù A; Zheng Y
    Adv Mater; 2021 May; 33(20):e2007236. PubMed ID: 33837615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition.
    Shen F; Zhang Z; Zhou Y; Ma J; Chen K; Chen H; Wang S; Xu J; Chen Z
    Nat Commun; 2022 Sep; 13(1):5597. PubMed ID: 36151069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman microscopy and infrared optical properties of SiGe Mie resonators formed on SiO
    Poborchii V; Bouabdellaoui M; Uchida N; Ronda A; Berbezier I; David T; Ruiz CM; Zazoui M; Sena RP; Abbarchi M; Favre L
    Nanotechnology; 2020 May; 31(19):195602. PubMed ID: 31931487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light-Matter Interactions.
    Zotev PG; Wang Y; Sortino L; Severs Millard T; Mullin N; Conteduca D; Shagar M; Genco A; Hobbs JK; Krauss TF; Tartakovskii AI
    ACS Nano; 2022 Apr; 16(4):6493-6505. PubMed ID: 35385647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct and High-Throughput Fabrication of Mie-Resonant Metasurfaces
    Berzinš J; Indrišiūnas S; van Erve K; Nagarajan A; Fasold S; Steinert M; Gerini G; Gečys P; Pertsch T; Bäumer SMB; Setzpfandt F
    ACS Nano; 2020 May; 14(5):6138-6149. PubMed ID: 32310637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS
    Lepeshov S; Wang M; Krasnok A; Kotov O; Zhang T; Liu H; Jiang T; Korgel B; Terrones M; Zheng Y; Alú A
    ACS Appl Mater Interfaces; 2018 May; 10(19):16690-16697. PubMed ID: 29651843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic Anisotropic Excitonic Optical Nanoantennas.
    Kang ESH; Kk S; Jeon I; Kim J; Chen S; Kim KH; Kim KH; Lee HS; Westerlund F; Jonsson MP
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201907. PubMed ID: 35619287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically Controlled Scattering in a Hybrid Dielectric-Plasmonic Nanoantenna.
    Yan J; Ma C; Liu P; Wang C; Yang G
    Nano Lett; 2017 Aug; 17(8):4793-4800. PubMed ID: 28686459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Colors Enabled by Lattice Resonance on Silicon Nitride Metasurfaces.
    Yang JH; Babicheva VE; Yu MW; Lu TC; Lin TR; Chen KP
    ACS Nano; 2020 May; 14(5):5678-5685. PubMed ID: 32298575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically resonant dielectric nanostructures.
    Kuznetsov AI; Miroshnichenko AE; Brongersma ML; Kivshar YS; Luk'yanchuk B
    Science; 2016 Nov; 354(6314):. PubMed ID: 27856851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.