These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3251279)

  • 1. [Inhibitory mechanism of active oxygen production: monodehydroascorbic acid reductase].
    Mano J; Asada K
    Tanpakushitsu Kakusan Koso; 1988 Dec; 33(16):2862-8. PubMed ID: 3251279
    [No Abstract]   [Full Text] [Related]  

  • 2. Semidehydroascorbate as a product of the enzymic conversion of dopamine to norepinephrine. Coupling of semidehydroascorbate reductase to dopamine-beta-hydroxylase.
    Diliberto EJ; Allen PL
    Mol Pharmacol; 1980 May; 17(3):421-6. PubMed ID: 7393218
    [No Abstract]   [Full Text] [Related]  

  • 3. [Proceedings: Influence of phospholipids and membrane structure on enzyme activity of NADH: mondehydroascorbate oxidoreductase].
    Schulze HU
    Z Klin Chem Klin Biochem; 1975 Aug; 13(8):369-70. PubMed ID: 1216963
    [No Abstract]   [Full Text] [Related]  

  • 4. Reinvestigation of the diabetogenic effect of dehydroascorbic acid.
    Domke I; Weis W
    Int J Vitam Nutr Res; 1983; 53(1):51-60. PubMed ID: 6853059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds.
    Tommasi F; Paciolla C; de Pinto MC; De Gara L
    J Exp Bot; 2001 Aug; 52(361):1647-54. PubMed ID: 11479329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of dopamine-beta-hydroxylation. Semidehydroascorbate as the enzyme oxidation product of ascorbate.
    Diliberto EJ; Allen PL
    J Biol Chem; 1981 Apr; 256(7):3385-93. PubMed ID: 6451628
    [No Abstract]   [Full Text] [Related]  

  • 7. Monodehydroascorbate as an electron acceptor for NADH reduction by coated vesicle and Golgi apparatus fractions of rat liver.
    Sun I; Morré DJ; Crane FL; Safranski K; Croze EM
    Biochim Biophys Acta; 1984 Feb; 797(2):266-75. PubMed ID: 6141808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbic acid metabolism in protection against free radicals: a radiation model.
    Rose RC
    Biochem Biophys Res Commun; 1990 Jun; 169(2):430-6. PubMed ID: 2162665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic basis for altered ascorbic acid and dehydroascorbic acid levels in diabetes.
    Bode AM; Yavarow CR; Fry DA; Vargas T
    Biochem Biophys Res Commun; 1993 Mar; 191(3):1347-53. PubMed ID: 8466510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbic acid and biological systems. Ascorbic acid and electron transport.
    Weis W
    Ann N Y Acad Sci; 1975 Sep; 258():190-200. PubMed ID: 941
    [No Abstract]   [Full Text] [Related]  

  • 11. Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase.
    Sakihama Y; Mano J; Sano S; Asada K; Yamasaki H
    Biochem Biophys Res Commun; 2000 Dec; 279(3):949-54. PubMed ID: 11162455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydroascorbate reduction.
    Wells WW; Xu DP
    J Bioenerg Biomembr; 1994 Aug; 26(4):369-77. PubMed ID: 7844111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of ascorbic acid and its biological function. I. ESR determination of the ascorbyl radical in biological samples and in model systems.
    Lohmann W; Holz D
    Biophys Struct Mech; 1984; 10(4):197-204. PubMed ID: 6326883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and reduction of ascorbate radicals by hog thyroid microsomes.
    Nakamura M; Ohtaki S
    Arch Biochem Biophys; 1993 Aug; 305(1):84-90. PubMed ID: 8393646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of superoxide and ascorbyl radicals in the circulation of animals under oxidative stress.
    Koyama K; Takatsuki K; Inoue M
    Arch Biochem Biophys; 1994 Mar; 309(2):323-8. PubMed ID: 8135544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues.
    Foyer CH; Mullineaux PM
    FEBS Lett; 1998 Apr; 425(3):528-9. PubMed ID: 9563527
    [No Abstract]   [Full Text] [Related]  

  • 17. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial uptake and recycling of ascorbic acid.
    Li X; Cobb CE; Hill KE; Burk RF; May JM
    Arch Biochem Biophys; 2001 Mar; 387(1):143-53. PubMed ID: 11368176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-electron and two-electron transfer mechanisms in enzymic oxidation-reduction reactions.
    Yamazaki I
    Adv Biophys; 1971; 2():33-76. PubMed ID: 4146736
    [No Abstract]   [Full Text] [Related]  

  • 20. Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: dependence on the electron transport chain.
    Li X; Cobb CE; May JM
    Arch Biochem Biophys; 2002 Jul; 403(1):103-10. PubMed ID: 12061807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.