These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 32512849)
1. Chronic Sulforaphane Administration Inhibits Resistance to the mTOR-Inhibitor Everolimus in Bladder Cancer Cells. Justin S; Rutz J; Maxeiner S; Chun FK; Juengel E; Blaheta RA Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32512849 [TBL] [Abstract][Full Text] [Related]
2. Sulforaphane as an adjunctive to everolimus counteracts everolimus resistance in renal cancer cell lines. Juengel E; Euler S; Maxeiner S; Rutz J; Justin S; Roos F; Khoder W; Nelson K; Bechstein WO; Blaheta RA Phytomedicine; 2017 Apr; 27():1-7. PubMed ID: 28314474 [TBL] [Abstract][Full Text] [Related]
3. Bladder Cancer Metastasis Induced by Chronic Everolimus Application Can Be Counteracted by Sulforaphane In Vitro. Justin S; Rutz J; Maxeiner S; Chun FK; Juengel E; Blaheta RA Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32759798 [TBL] [Abstract][Full Text] [Related]
4. Sulforaphane inhibits proliferation and invasive activity of everolimus-resistant kidney cancer cells in vitro. Juengel E; Maxeiner S; Rutz J; Justin S; Roos F; Khoder W; Tsaur I; Nelson K; Bechstein WO; Haferkamp A; Blaheta RA Oncotarget; 2016 Dec; 7(51):85208-85219. PubMed ID: 27863441 [TBL] [Abstract][Full Text] [Related]
5. Potentiation of Growth Inhibitory Responses of the mTOR Inhibitor Everolimus by Dual mTORC1/2 Inhibitors in Cultured Breast Cancer Cell Lines. Leung EY; Askarian-Amiri M; Finlay GJ; Rewcastle GW; Baguley BC PLoS One; 2015; 10(7):e0131400. PubMed ID: 26148118 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous Targeting of Bladder Tumor Growth, Survival, and Epithelial-to-Mesenchymal Transition with a Novel Therapeutic Combination of Acetazolamide (AZ) and Sulforaphane (SFN). Islam SS; Mokhtari RB; Akbari P; Hatina J; Yeger H; Farhat WA Target Oncol; 2016 Apr; 11(2):209-27. PubMed ID: 26453055 [TBL] [Abstract][Full Text] [Related]
7. Sulforaphane Reduces Prostate Cancer Cell Growth and Proliferation In Vitro by Modulating the Cdk-Cyclin Axis and Expression of the CD44 Variants 4, 5, and 7. Rutz J; Thaler S; Maxeiner S; Chun FK; Blaheta RA Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33218199 [TBL] [Abstract][Full Text] [Related]
8. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Fourneaux B; Chaire V; Lucchesi C; Karanian M; Pineau R; Laroche-Clary A; Italiano A Oncotarget; 2017 Jan; 8(5):7878-7890. PubMed ID: 28002802 [TBL] [Abstract][Full Text] [Related]
9. Chronic Sulforaphane Application Does Not Induce Resistance in Renal Cell Carcinoma Cells. Rutz J; Juengel E; Euler S; Maxeiner S; Justin S; Roos F; Chun FK; Blaheta RA Anticancer Res; 2018 Nov; 38(11):6201-6207. PubMed ID: 30396938 [TBL] [Abstract][Full Text] [Related]
10. Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Wang L; Liu D; Ahmed T; Chung FL; Conaway C; Chiao JW Int J Oncol; 2004 Jan; 24(1):187-92. PubMed ID: 14654956 [TBL] [Abstract][Full Text] [Related]
11. Plant-Derived Sulforaphane Suppresses Growth and Proliferation of Drug-Sensitive and Drug-Resistant Bladder Cancer Cell Lines In Vitro. Xie H; Rutz J; Maxeiner S; Grein T; Thomas A; Juengel E; Chun FK; Cinatl J; Haferkamp A; Tsaur I; Blaheta RA Cancers (Basel); 2022 Sep; 14(19):. PubMed ID: 36230603 [TBL] [Abstract][Full Text] [Related]
12. Olive Mill Wastewater Inhibits Growth and Proliferation of Cisplatin- and Gemcitabine-Resistant Bladder Cancer Cells In Vitro by Down-Regulating the Akt/mTOR-Signaling Pathway. Rutz J; Maxeiner S; Juengel E; Chun FK; Tsaur I; Blaheta RA Nutrients; 2022 Jan; 14(2):. PubMed ID: 35057550 [TBL] [Abstract][Full Text] [Related]
14. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells. Martinelli E; Troiani T; D'Aiuto E; Morgillo F; Vitagliano D; Capasso A; Costantino S; Ciuffreda LP; Merolla F; Vecchione L; De Vriendt V; Tejpar S; Nappi A; Sforza V; Martini G; Berrino L; De Palma R; Ciardiello F Int J Cancer; 2013 Nov; 133(9):2089-101. PubMed ID: 23629727 [TBL] [Abstract][Full Text] [Related]
15. Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors. Vandamme T; Beyens M; de Beeck KO; Dogan F; van Koetsveld PM; Pauwels P; Mortier G; Vangestel C; de Herder W; Van Camp G; Peeters M; Hofland LJ Br J Cancer; 2016 Mar; 114(6):650-8. PubMed ID: 26978006 [TBL] [Abstract][Full Text] [Related]
16. Targeting Focal Adhesion Kinase and Resistance to mTOR Inhibition in Pancreatic Neuroendocrine Tumors. François RA; Maeng K; Nawab A; Kaye FJ; Hochwald SN; Zajac-Kaye M J Natl Cancer Inst; 2015 Aug; 107(8):. PubMed ID: 25971297 [TBL] [Abstract][Full Text] [Related]
17. Allyl-, Butyl- and Phenylethyl-Isothiocyanate Modulate Akt-mTOR and Cyclin-CDK Signaling in Gemcitabine- and Cisplatin-Resistant Bladder Cancer Cell Lines. Rutz J; Maxeiner S; Grein T; Sonnenburg M; Khadir SE; Makhatelashvili N; Mann J; Xie H; Cinatl J; Thomas A; Chun FK; Haferkamp A; Blaheta RA; Tsaur I Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232303 [TBL] [Abstract][Full Text] [Related]
18. Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells. El Guerrab A; Bamdad M; Bignon YJ; Penault-Llorca F; Aubel C Sci Rep; 2020 Apr; 10(1):6367. PubMed ID: 32286420 [TBL] [Abstract][Full Text] [Related]
19. mTOR inhibitor PP242 increases antitumor activity of sulforaphane by blocking Akt/mTOR pathway in esophageal squamous cell carcinoma. Lu Z; Zhang Y; Xu Y; Wei H; Zhao W; Wang P; Li Y; Hou G Mol Biol Rep; 2022 Jan; 49(1):451-461. PubMed ID: 34731371 [TBL] [Abstract][Full Text] [Related]
20. Combination of CDK4/6 and mTOR Inhibitors Suppressed Doxorubicin-resistant Osteosarcoma in a Patient-derived Orthotopic Xenograft Mouse Model: A Translatable Strategy for Recalcitrant Disease. Oshiro H; Tome Y; Miyake K; Higuchi T; Sugisawa N; Kanaya F; Nishida K; Hoffman RM Anticancer Res; 2021 Jul; 41(7):3287-3292. PubMed ID: 34230123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]