These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32512915)

  • 1. Cell Culture on Low-Fluorescence and High-Resolution Photoresist.
    Ueno H; Maruo K; Inoue M; Kotera H; Suzuki T
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32512915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of low-fluorescence thick photoresist for high-aspect-ratio microstructure in bio-application.
    Tamai H; Maruo K; Ueno H; Terao K; Kotera H; Suzuki T
    Biomicrofluidics; 2015 Mar; 9(2):022405. PubMed ID: 25945132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoresist with low fluorescence for bioanalytical applications.
    Pai JH; Wang Y; Salazar GT; Sims CE; Bachman M; Li GP; Allbritton NL
    Anal Chem; 2007 Nov; 79(22):8774-80. PubMed ID: 17949059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent magnetic photoresists for bioanalytical applications.
    Gach PC; Sims CE; Allbritton NL
    Biomaterials; 2010 Nov; 31(33):8810-7. PubMed ID: 20719380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of freestanding photoresist films for biological and MEMS applications.
    Ornoff DM; Wang Y; Allbritton NL
    J Micromech Microeng; 2013 Feb; 23(2):. PubMed ID: 24072957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropatterning Method for Porous Materials Using the Difference of the Glass Transition Temperature between Exposed and Unexposed Areas of a Thick-Photoresist.
    Ueno H; Sato K; Yamada K; Suzuki T
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31906208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2D Waveguide Method for Lithography Simulation of Thick SU-8 Photoresist.
    Geng ZC; Zhou ZF; Dai H; Huang QA
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33138304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic vibration used for improving interfacial adhesion strength between metal substrate and high-aspect-ratio thick SU-8 photoresist mould.
    Du L; Zhai K; Li X; Liu S; Tao Y
    Ultrasonics; 2020 Apr; 103():106100. PubMed ID: 32044567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulating an Ideal Protein Photoresist for Fabricating Dynamic Microstructures with High Aspect Ratios and Uniform Responsiveness.
    Lay CL; Lee YH; Lee MR; Phang IY; Ling XY
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8145-53. PubMed ID: 26974854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary liquid bridge soft lithography for micro-patterning preparation based on SU-8 photoresist templates with special wettability.
    Wang H; Li X; Luan K; Bai X
    RSC Adv; 2019 Jul; 9(41):23986-23993. PubMed ID: 35530577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist.
    Wang Y; Bachman M; Sims CE; Li GP; Allbritton NL
    Langmuir; 2006 Mar; 22(6):2719-25. PubMed ID: 16519474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein covalently conjugated SU-8 surface for the enhancement of mesenchymal stem cell adhesion and proliferation.
    Xue P; Bao J; Chuah YJ; Menon NV; Zhang Y; Kang Y
    Langmuir; 2014 Mar; 30(11):3110-7. PubMed ID: 24597829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial cell patterns on a PDMS polymer surface using a micro plasma structure.
    Kim JH; Seo S; Min J
    J Biotechnol; 2011 Sep; 155(3):308-11. PubMed ID: 21801765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced lithography simulation for various 3-dimensional nano/microstructuring fabrications in positive- and negative-tone photoresists.
    Kim SK; Oh HK; Jung YD; An I
    J Nanosci Nanotechnol; 2011 Jan; 11(1):528-32. PubMed ID: 21446490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-fabrication of Piezo-composite materials on the flexible substrates.
    Shin DJ; Koh JH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6321-5. PubMed ID: 24205653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved neuron culture using scaffolds made of three-dimensional PDMS micro-lattices.
    Li S; Severino FPU; Ban J; Wang L; Pinato G; Torre V; Chen Y
    Biomed Mater; 2018 Feb; 13(3):034105. PubMed ID: 29332841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning in electron beam lithography to boost photoresist formulation design for high-resolution patterning.
    Zhao R; Wang X; Xu H; Wei Y; He X
    Nanoscale; 2024 Feb; 16(8):4212-4218. PubMed ID: 38328883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two- and three-dimensional micro/nanostructure patterning of CdS-polymer nanocomposites with a laser interference technique and in situ synthesis.
    Sun ZB; Dong XZ; Chen WQ; Shoji S; Duan XM; Kawata S
    Nanotechnology; 2008 Jan; 19(3):035611. PubMed ID: 21817585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.