These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32512993)

  • 1. Investigation of Ferrocene Linkers in β-Substituted Porphyrins.
    Mapley JI; Hayes P; Officer DL; Wagner P; Gordon KC
    J Phys Chem A; 2020 Jul; 124(27):5513-5522. PubMed ID: 32512993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Tuning of Unsaturated β-Substituents on Zn Porphyrins: A Synthetic, Spectroscopic and Computational Study.
    van der Salm H; Wagner P; Wagner K; Officer DL; Wallace GG; Gordon KC
    Chemistry; 2015 Oct; 21(44):15622-32. PubMed ID: 26365213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range electronic communication in free-base meso-poly(ferrocenyl)-containing porphyrins.
    Nemykin VN; Rohde GT; Barrett CD; Hadt RG; Sabin JR; Reina G; Galloni P; Floris B
    Inorg Chem; 2010 Aug; 49(16):7497-509. PubMed ID: 20690759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad.
    Wijesinghe CA; El-Khouly ME; Zandler ME; Fukuzumi S; D'Souza F
    Chemistry; 2013 Jul; 19(29):9629-38. PubMed ID: 23754703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational and Spectroscopic Analysis of β-Indandione Modified Zinc Porphyrins.
    Mapley JI; Wagner P; Officer DL; Gordon KC
    J Phys Chem A; 2018 May; 122(18):4448-4456. PubMed ID: 29672040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and computational study of β-ethynylphenylene substituted zinc and free-base porphyrins.
    Earles JC; Gordon KC; Stephenson AW; Partridge AC; Officer DL
    Phys Chem Chem Phys; 2011 Jan; 13(4):1597-605. PubMed ID: 21125110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization, and electron-transfer processes in indium ferrocenyl-containing porphyrins and their fullerene adducts.
    Dammer SJ; Solntsev PV; Sabin JR; Nemykin VN
    Inorg Chem; 2013 Aug; 52(16):9496-510. PubMed ID: 23919915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.
    Melomedov J; Wünsche von Leupoldt A; Meister M; Laquai F; Heinze K
    Dalton Trans; 2013 Jul; 42(26):9727-39. PubMed ID: 23685531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed substituted porphyrins: structural and electrochemical redox properties.
    Bhyrappa P; Sankar M; Varghese B
    Inorg Chem; 2006 May; 45(10):4136-49. PubMed ID: 16676974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of thiol-derivatized ferrocene-porphyrins for studies of multibit information storage.
    Gryko DT; Zhao F; Yasseri AA; Roth KM; Bocian DF; Kuhr WG; Lindsey JS
    J Org Chem; 2000 Nov; 65(22):7356-62. PubMed ID: 11076591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of the structural and vibroelectronic properties of porphyrin and its derivatives.
    Aydin M
    Molecules; 2014 Dec; 19(12):20988-1021. PubMed ID: 25517340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spectroscopic impact of interactions with the four Gouterman orbitals from peripheral decoration of porphyrins with simple electron withdrawing and donating groups.
    Zhang A; Kwan L; Stillman MJ
    Org Biomol Chem; 2017 Nov; 15(43):9081-9094. PubMed ID: 28914323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrocene and porphyrin monolayers on Si(100) surfaces: preparation and effect of linker length on electron transfer.
    Huang K; Duclairoir F; Pro T; Buckley J; Marchand G; Martinez E; Marchon JC; De Salvo B; Delapierre G; Vinet F
    Chemphyschem; 2009 Apr; 10(6):963-71. PubMed ID: 19263452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spectroscopic and DFT study of thiophene-substituted metalloporphyrins as dye-sensitized solar cell dyes.
    Lind SJ; Gordon KC; Gambhir S; Officer DL
    Phys Chem Chem Phys; 2009 Jul; 11(27):5598-607. PubMed ID: 19842477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chlorin structure on theoretical electronic absorption spectra and on the energy released by porphyrin-based photosensitizers.
    Palma M; Cárdenas-Jirón GI; Menéndez Rodríguez MI
    J Phys Chem A; 2008 Dec; 112(51):13574-83. PubMed ID: 19053551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azobenzene-linked porphyrin-fullerene dyads.
    Schuster DI; Li K; Guldi DM; Palkar A; Echegoyen L; Stanisky C; Cross RJ; Niemi M; Tkachenko NV; Lemmetyinen H
    J Am Chem Soc; 2007 Dec; 129(51):15973-82. PubMed ID: 18052375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and optical and electronic properties of core-modified 21,23-dithiaporphyrins.
    Bromby AD; Jansonius RP; Sutherland TC
    J Org Chem; 2013 Feb; 78(4):1612-20. PubMed ID: 23384427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-Cyclobutenyl-1,2-dione-substituted porphyrins. A general and efficient entry to porphyrin-quinone and quinone-porphyrin-quinone architectures.
    Shi X; Amin SR; Liebeskind LS
    J Org Chem; 2000 Mar; 65(6):1650-64. PubMed ID: 10750489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast photoinduced electron transfer in directly linked porphyrin-ferrocene dyads.
    Kubo M; Mori Y; Otani M; Murakami M; Ishibashi Y; Yasuda M; Hosomizu K; Miyasaka H; Imahori H; Nakashima S
    J Phys Chem A; 2007 Jun; 111(24):5136-43. PubMed ID: 17530835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range electronic connection in picket-fence like ferrocene-porphyrin derivatives.
    Devillers CH; Milet A; Moutet JC; Pécaut J; Royal G; Saint-Aman E; Bucher C
    Dalton Trans; 2013 Jan; 42(4):1196-209. PubMed ID: 23124393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.