These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32513005)

  • 1. A Sub-Micron Spherical Atomic Force Microscopic Tip for Surface Measurements.
    Hu H; Shi B; Breslin CM; Gignac L; Peng Y
    Langmuir; 2020 Jul; 36(27):7861-7867. PubMed ID: 32513005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wear-resistant silicon nano-spherical AFM probe for robust nanotribological studies.
    Uzoma PC; Ding X; Wen X; Zhang L; Penkov OV; Hu H
    Phys Chem Chem Phys; 2022 Oct; 24(38):23849-23857. PubMed ID: 36165057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFM Analysis of Micron and Sub-Micron Sized Bridges Fabricated Using the Femtosecond Laser on YBCO Thin Films.
    Umenne P
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33302556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the friction between single polystyrene nanospheres and silicon surface using atomic force microscopy.
    Guo D; Li J; Chang L; Luo J
    Langmuir; 2013 Jun; 29(23):6920-5. PubMed ID: 23725519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-nano to nanometer wear and tribocorrosion of titanium oxide-metal surfaces by in situ atomic force microscopy.
    Liu Y; Zhu D; Gilbert JL
    Acta Biomater; 2021 May; 126():477-484. PubMed ID: 33812071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.
    Onishi K; Guo H; Nagano S; Fujita D
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i30. PubMed ID: 25359832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for characterizing nanoscale wear of atomic force microscope tips.
    Liu J; Notbohm JK; Carpick RW; Turner KT
    ACS Nano; 2010 Jul; 4(7):3763-72. PubMed ID: 20575565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotribology under electrochemical conditions: influence of a copper (sub)monolayer deposited on single crystal electrodes on friction forces studied with atomic force microscopy.
    Nielinger M; Baltruschat H
    Phys Chem Chem Phys; 2007 Aug; 9(30):3965-9. PubMed ID: 17646884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined AFM nano-machining and reactive ion etching to fabricate high aspect ratio structures.
    Peng P; Shi T; Liao G; Tang Z
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7287-90. PubMed ID: 21137916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of nanoscale and sub-nanoscale friction behavior between graphene and a silicon tip: analysis of tip apex motion.
    Yoon HM; Jung Y; Jun SC; Kondaraju S; Lee JS
    Nanoscale; 2015 Apr; 7(14):6295-303. PubMed ID: 25782533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloid probes with increased tip height for higher sensitivity in friction force microscopy and less cantilever damping in dynamic force microscopy.
    Schmutz JE; Schäfer MM; Hölscher H
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):026103. PubMed ID: 18315335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size Dependence of Nanoscale Wear of Silicon Carbide.
    Tangpatjaroen C; Grierson D; Shannon S; Jakes JE; Szlufarska I
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1929-1940. PubMed ID: 27997110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact mechanics and tip shape in AFM-based nanomechanical measurements.
    Kopycinska-Müller M; Geiss RH; Hurley DC
    Ultramicroscopy; 2006 Apr; 106(6):466-74. PubMed ID: 16448755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing.
    Fletcher PC; Felts JR; Dai Z; Jacobs TD; Zeng H; Lee W; Sheehan PE; Carlisle JA; Carpick RW; King WP
    ACS Nano; 2010 Jun; 4(6):3338-44. PubMed ID: 20481445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.
    Tomitori M; Sasahara A
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i11-i12. PubMed ID: 25359799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wear comparison of critical dimension-atomic force microscopy tips.
    Orji NG; Dixson RG; Lopez E; Irmer B
    J Micro Nanolithogr MEMS MOEMS; 2020; 19(1):. PubMed ID: 33304445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic model of the jump-to phenomenon during AFM analysis.
    Bowen J; Cheneler D
    Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.
    Caballero D; Villanueva G; Plaza JA; Mills CA; Samitier J; Errachid A
    J Nanosci Nanotechnol; 2010 Jan; 10(1):497-501. PubMed ID: 20352882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of tip shape on nanomechanical properties measurements using AFM.
    Nguyen QD; Chung KH
    Ultramicroscopy; 2019 Jul; 202():1-9. PubMed ID: 30927610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.