These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32513071)

  • 21. Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors.
    Sayegh MA; Daraghma H; Mekid S; Bashmal S
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical coupling through the skin affects whisker movements and tactile information encoding.
    Ego-Stengel V; Abbasi A; Larroche M; Lassagne H; Boubenec Y; Shulz DE
    J Neurophysiol; 2019 Oct; 122(4):1606-1622. PubMed ID: 31411931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whisker touch sensing guides locomotion in small, quadrupedal mammals.
    Grant RA; Breakell V; Prescott TJ
    Proc Biol Sci; 2018 Jun; 285(1880):. PubMed ID: 29899069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radial distance determination in the rat vibrissal system and the effects of Weber's law.
    Solomon JH; Hartmann MJ
    Philos Trans R Soc Lond B Biol Sci; 2011 Nov; 366(1581):3049-57. PubMed ID: 21969686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beyond cones: an improved model of whisker bending based on measured mechanics and tapering.
    Hires SA; Schuyler A; Sy J; Huang V; Wyche I; Wang X; Golomb D
    J Neurophysiol; 2016 Aug; 116(2):812-24. PubMed ID: 27250911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of whisker geometry on contact force produced by vibrissae moving at different velocities.
    Carvell GE; Simons DJ
    J Neurophysiol; 2017 Sep; 118(3):1637-1649. PubMed ID: 28659457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration.
    Quist BW; Hartmann MJ
    J Neurophysiol; 2012 May; 107(9):2298-312. PubMed ID: 22298834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constraints on the deformation of the vibrissa within the follicle.
    Luo Y; Bresee CS; Rudnicki JW; Hartmann MJZ
    PLoS Comput Biol; 2021 Apr; 17(4):e1007887. PubMed ID: 33793548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pinnipeds orient and control their whiskers: a study on Pacific walrus, California sea lion and Harbor seal.
    Milne AO; Smith C; Orton LD; Sullivan MS; Grant RA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 May; 206(3):441-451. PubMed ID: 32077991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and fabrication of an E-whisker using a PVDF ring.
    Jiang Y; Li J; Wang Z; Qin Y; Guo G; Zheng Z; Bian Y
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33530062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow.
    Yu YSW; Bush NE; Hartmann MJZ
    J Neurosci; 2019 Jul; 39(30):5881-5896. PubMed ID: 31097620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pre-neuronal morphological processing of object location by individual whiskers.
    Bagdasarian K; Szwed M; Knutsen PM; Deutsch D; Derdikman D; Pietr M; Simony E; Ahissar E
    Nat Neurosci; 2013 May; 16(5):622-31. PubMed ID: 23563582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical responses of rat vibrissae to airflow.
    Yu YS; Graff MM; Hartmann MJ
    J Exp Biol; 2016 Apr; 219(Pt 7):937-48. PubMed ID: 27030774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration.
    Grant RA; Mitchinson B; Fox CW; Prescott TJ
    J Neurophysiol; 2009 Feb; 101(2):862-74. PubMed ID: 19036871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system.
    Bush NE; Schroeder CL; Hobbs JA; Yang AE; Huet LA; Solla SA; Hartmann MJ
    Elife; 2016 Jun; 5():. PubMed ID: 27348221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tactile object localization by anticipatory whisker motion.
    Voigts J; Herman DH; Celikel T
    J Neurophysiol; 2015 Jan; 113(2):620-32. PubMed ID: 25339711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gradient of tactile properties in the rat whisker pad.
    Gugig E; Sharma H; Azouz R
    PLoS Biol; 2020 Oct; 18(10):e3000699. PubMed ID: 33090990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad.
    Hobbs JA; Towal RB; Hartmann MJ
    PLoS Comput Biol; 2016 Jan; 12(1):e1004109. PubMed ID: 26745501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whisker sensory system - from receptor to decision.
    Diamond ME; Arabzadeh E
    Prog Neurobiol; 2013 Apr; 103():28-40. PubMed ID: 22683381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mystacial Whisker Layout and Musculature in the Guinea Pig (Cavia porcellus): A Social, Diurnal Mammal.
    Grant RA; Delaunay MG; Haidarliu S
    Anat Rec (Hoboken); 2017 Mar; 300(3):527-536. PubMed ID: 27779826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.