BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32513388)

  • 21. Impaired long-term potentiation in the prefrontal cortex of Huntington's disease mouse models: rescue by D1 dopamine receptor activation.
    Dallérac GM; Vatsavayai SC; Cummings DM; Milnerwood AJ; Peddie CJ; Evans KA; Walters SW; Rezaie P; Hirst MC; Murphy KP
    Neurodegener Dis; 2011; 8(4):230-9. PubMed ID: 21282937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease.
    Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS
    J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine's effects.
    Moreno E; Moreno-Delgado D; Navarro G; Hoffmann HM; Fuentes S; Rosell-Vilar S; Gasperini P; Rodríguez-Ruiz M; Medrano M; Mallol J; Cortés A; Casadó V; Lluís C; Ferré S; Ortiz J; Canela E; McCormick PJ
    J Neurosci; 2014 Mar; 34(10):3545-58. PubMed ID: 24599455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histamine H3 receptor antagonist decreases cue-induced alcohol reinstatement in mice.
    Nuutinen S; Mäki T; Rozov S; Bäckström P; Hyytiä P; Piepponen P; Panula P
    Neuropharmacology; 2016 Jul; 106():156-63. PubMed ID: 26107118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.
    Lai X; Ye L; Liao Y; Jin L; Ma Q; Lu B; Sun Y; Shi Y; Zhou N
    J Neurochem; 2016 Apr; 137(2):200-15. PubMed ID: 26826667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Striatal neurochemical changes in transgenic models of Huntington's disease.
    Ariano MA; Aronin N; Difiglia M; Tagle DA; Sibley DR; Leavitt BR; Hayden MR; Levine MS
    J Neurosci Res; 2002 Jun; 68(6):716-29. PubMed ID: 12111832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Striatal Signaling Regulated by the H3R Histamine Receptor in a Mouse Model of tic Pathophysiology.
    Rapanelli M; Frick L; Jindachomthong K; Xu J; Ohtsu H; Nairn AC; Pittenger C
    Neuroscience; 2018 Nov; 392():172-179. PubMed ID: 30278251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compromised Dopaminergic Encoding of Reward Accompanying Suppressed Willingness to Overcome High Effort Costs Is a Prominent Prodromal Characteristic of the Q175 Mouse Model of Huntington's Disease.
    Covey DP; Dantrassy HM; Zlebnik NE; Gildish I; Cheer JF
    J Neurosci; 2016 May; 36(18):4993-5002. PubMed ID: 27147652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in striatal activity and functional connectivity in a mouse model of Huntington's disease.
    Cabanas M; Bassil F; Mons N; Garret M; Cho YH
    PLoS One; 2017; 12(9):e0184580. PubMed ID: 28934250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization of dopamine receptors and associated mRNA in transplants of human fetal striatal tissue in rodents with experimental Huntington's disease.
    Pundt LL; Narang N; Kondoh T; Low WC
    Neurosci Res; 1997 Apr; 27(4):305-15. PubMed ID: 9152043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington's disease.
    Ginovart N; Lundin A; Farde L; Halldin C; Bäckman L; Swahn CG; Pauli S; Sedvall G
    Brain; 1997 Mar; 120 ( Pt 3)():503-14. PubMed ID: 9126061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resolving pathobiological mechanisms relating to Huntington disease: gait, balance, and involuntary movements in mice with targeted ablation of striatal D1 dopamine receptor cells.
    Kim HA; Jiang L; Madsen H; Parish CL; Massalas J; Smardencas A; O'Leary C; Gantois I; O'Tuathaigh C; Waddington JL; Ehrlich ME; Lawrence AJ; Drago J
    Neurobiol Dis; 2014 Feb; 62():323-37. PubMed ID: 24135007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease.
    Ma Q; Yang J; Li T; Milner TA; Hempstead BL
    Neurobiol Dis; 2015 Oct; 82():466-477. PubMed ID: 26282324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Huntington's disease progression. PET and clinical observations.
    Andrews TC; Weeks RA; Turjanski N; Gunn RN; Watkins LH; Sahakian B; Hodges JR; Rosser AE; Wood NW; Brooks DJ
    Brain; 1999 Dec; 122 ( Pt 12)():2353-63. PubMed ID: 10581228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington's disease.
    Weeks RA; Piccini P; Harding AE; Brooks DJ
    Ann Neurol; 1996 Jul; 40(1):49-54. PubMed ID: 8687191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced expression of dopamine D2 receptors on astrocytes in R6/1 HD mice and HD post-mortem tissue.
    Harris KL; Mason SL; Vallin B; Barker RA
    Neurosci Lett; 2022 Jan; 767():136289. PubMed ID: 34637857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histamine H
    Varaschin RK; Osterstock G; Ducrot C; Leino S; Bourque MJ; Prado MAM; Prado VF; Salminen O; Rannanpää Née Nuutinen S; Trudeau LE
    Neuroscience; 2018 Apr; 376():188-203. PubMed ID: 29374538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early Downregulation of p75
    Suelves N; Miguez A; López-Benito S; Barriga GG; Giralt A; Alvarez-Periel E; Arévalo JC; Alberch J; Ginés S; Brito V
    Mol Neurobiol; 2019 Feb; 56(2):935-953. PubMed ID: 29804232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dopaminergic manipulations and its effects on neurogenesis and motor function in a transgenic mouse model of Huntington's disease.
    Choi ML; Begeti F; Oh JH; Lee SY; O'Keeffe GC; Clelland CD; Tyers P; Cho ZH; Kim YB; Barker RA
    Neurobiol Dis; 2014 Jun; 66():19-27. PubMed ID: 24561069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delayed onset of Huntington's disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors.
    Glass M; van Dellen A; Blakemore C; Hannan AJ; Faull RL
    Neuroscience; 2004; 123(1):207-12. PubMed ID: 14667455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.