These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32513441)

  • 1. Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications.
    Kamath D; Shukla S; Arsenault R; Kim HC; Anctil A
    Waste Manag; 2020 Jul; 113():497-507. PubMed ID: 32513441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage.
    Kamath D; Arsenault R; Kim HC; Anctil A
    Environ Sci Technol; 2020 Jun; 54(11):6878-6887. PubMed ID: 32343124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value.
    Cui J; Tan Q; Liu L; Li J
    Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second life batteries lifespan: Rest of useful life and environmental analysis.
    Casals LC; Amante García B; Canal C
    J Environ Manage; 2019 Feb; 232():354-363. PubMed ID: 30496965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-life battery systems for affordable energy access in Kenyan primary schools.
    Kebir N; Leonard A; Downey M; Jones B; Rabie K; Bhagavathy SM; Hirmer SA
    Sci Rep; 2023 Jan; 13(1):1374. PubMed ID: 36697469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe.
    Abdelbaky M; Peeters JR; Dewulf W
    Waste Manag; 2021 Apr; 125():1-9. PubMed ID: 33667978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated technical, economic, and environmental framework for evaluating the rooftop photovoltaic potential of old residential buildings.
    Wang P; Yu P; Huang L; Zhang Y
    J Environ Manage; 2022 Sep; 317():115296. PubMed ID: 35644676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additional Emissions and Cost from Storing Electricity in Stationary Battery Systems.
    Schmidt TS; Beuse M; Zhang X; Steffen B; Schneider SF; Pena-Bello A; Bauer C; Parra D
    Environ Sci Technol; 2019 Apr; 53(7):3379-3390. PubMed ID: 30848899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are electric vehicle batteries being underused? A review of current practices and sources of circularity.
    Etxandi-Santolaya M; Canals Casals L; Montes T; Corchero C
    J Environ Manage; 2023 Jul; 338():117814. PubMed ID: 36996558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of end-of-life electric vehicle batteries in China: Future scenarios and economic benefits.
    Jiang S; Zhang L; Hua H; Liu X; Wu H; Yuan Z
    Waste Manag; 2021 Nov; 135():70-78. PubMed ID: 34478950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries.
    Tao Y; Rahn CD; Archer LA; You F
    Sci Adv; 2021 Nov; 7(45):eabi7633. PubMed ID: 34739316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Warming Impacts of Residential Electricity Consumption: Agent-Based Modeling of Rooftop Solar Panel Adoption in Los Angeles County, California.
    Grant CA; Hicks AL
    Integr Environ Assess Manag; 2020 Nov; 16(6):1008-1018. PubMed ID: 32678946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy self-sufficient households with photovoltaics and electric vehicles are feasible in temperate climate.
    Gstöhl U; Pfenninger S
    PLoS One; 2020; 15(3):e0227368. PubMed ID: 32130215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior "green" electrode materials for secondary batteries: through the footprint family indicators to analyze their environmental friendliness.
    Wu H; Gong Y; Yu Y; Huang K; Wang L
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36538-36557. PubMed ID: 31732947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.
    Samaras C; Meisterling K
    Environ Sci Technol; 2008 May; 42(9):3170-6. PubMed ID: 18522090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cradle-to-Gate and Use-Phase Carbon Footprint of a Commercial Plug-in Hybrid Electric Vehicle Lithium-Ion Battery.
    Kim HC; Lee S; Wallington TJ
    Environ Sci Technol; 2023 Aug; 57(32):11834-11842. PubMed ID: 37515579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lifecycle cost and carbon implications of residential solar-plus-storage in California.
    Zheng J; Lin ZE; Masanet E; Deshmukh R; Suh S
    iScience; 2021 Dec; 24(12):103492. PubMed ID: 34934915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blueprint and Implementation of Rural Stand-Alone Power Grids with Second-Life Lithium Ion Vehicle Traction Battery Systems for Resilient Energy Supply of Tropical or Remote Regions.
    Nedjalkov A; Meyer J; Göken H; Reimer MV; Schade W
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31434202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.