These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32513441)

  • 21. Private and External Costs and Benefits of Replacing High-Emitting Peaker Plants with Batteries.
    Porzio J; Wolfson D; Auffhammer M; Scown CD
    Environ Sci Technol; 2023 Mar; 57(12):4992-5002. PubMed ID: 36917208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and On-Field Validation of an Embedded System for Monitoring Second-Life Electric Vehicle Lithium-Ion Batteries.
    Castillo-Martínez DH; Rodríguez-Rodríguez AJ; Soto A; Berrueta A; Vargas-Requena DT; Matias IR; Sanchis P; Ursúa A; Rodríguez-Rodríguez WE
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing U.S. residential energy use and CO2 emissions: how much, how soon, and at what cost?
    Lima Azevedo I; Morgan MG; Palmer K; Lave LB
    Environ Sci Technol; 2013 Mar; 47(6):2502-11. PubMed ID: 23398047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Future of Energy Storage: Advancements and Roadmaps for Lithium-Ion Batteries.
    Adnan M
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation and management of waste electric vehicle batteries in China.
    Xu C; Zhang W; He W; Li G; Huang J; Zhu H
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):20825-20830. PubMed ID: 28803394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use-Phase Drives Lithium-Ion Battery Life Cycle Environmental Impacts When Used for Frequency Regulation.
    Ryan NA; Lin Y; Mitchell-Ward N; Mathieu JL; Johnson JX
    Environ Sci Technol; 2018 Sep; 52(17):10163-10174. PubMed ID: 30118212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries.
    Üçtuğ FG; Azapagic A
    Sci Total Environ; 2018 Dec; 643():1579-1589. PubMed ID: 30189574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Techno-Economic Comparison of Stationary Storage and Battery-Electric Buses for Mitigating Solar Intermittency.
    Ahmed A; Massier T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The water consumption reductions from home solar installation in the United States.
    Vengosh A; Weinthal E
    Sci Total Environ; 2023 Jan; 854():158738. PubMed ID: 36108854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles.
    Watari T; Nansai K; Nakajima K; McLellan BC; Dominish E; Giurco D
    Environ Sci Technol; 2019 Oct; 53(20):11657-11665. PubMed ID: 31577427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards sustainable business models for electric vehicle battery second use: A critical review.
    Reinhardt R; Christodoulou I; Gassó-Domingo S; Amante García B
    J Environ Manage; 2019 Sep; 245():432-446. PubMed ID: 31170632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unintended Effects of Residential Energy Storage on Emissions from the Electric Power System.
    Babacan O; Abdulla A; Hanna R; Kleissl J; Victor DG
    Environ Sci Technol; 2018 Nov; 52(22):13600-13608. PubMed ID: 30335994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solar PV-Battery-Electric Grid-Based Energy System for Residential Applications: System Configuration and Viability.
    Bagalini V; Zhao BY; Wang RZ; Desideri U
    Research (Wash D C); 2019; 2019():3838603. PubMed ID: 31922133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterogeneous changes in electricity consumption patterns of residential distributed solar consumers due to battery storage adoption.
    Qiu YL; Xing B; Patwardhan A; Hultman N; Zhang H
    iScience; 2022 Jun; 25(6):104352. PubMed ID: 35601916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries.
    Chen C; Wu M; Xu Z; Feng T; Yang J; Chen Z; Wang S; Wang Y
    J Colloid Interface Sci; 2019 Mar; 538():267-276. PubMed ID: 30513468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Integrated Model to Conduct Multi-Criteria Technology Assessments: The Case of Electric Vehicle Batteries.
    Baars J; Cerdas F; Heidrich O
    Environ Sci Technol; 2023 Mar; 57(12):5056-5067. PubMed ID: 36913650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy footprint and carbon emission reduction using off-the-grid solar-powered mixing for lagoon treatment.
    Jiang Y; Bebee B; Mendoza A; Robinson AK; Zhang X; Rosso D
    J Environ Manage; 2018 Jan; 205():125-133. PubMed ID: 28972926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative life cycle assessment of battery storage systems for stationary applications.
    Hiremath M; Derendorf K; Vogt T
    Environ Sci Technol; 2015 Apr; 49(8):4825-33. PubMed ID: 25798660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.