These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. In-air EIS sensor for in situ and real-time monitoring of in vitro epithelial cells under air-exposure. Noh S; Kim H Lab Chip; 2020 May; 20(10):1751-1761. PubMed ID: 32347229 [TBL] [Abstract][Full Text] [Related]
6. Direct quantification of transendothelial electrical resistance in organs-on-chips. van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI Biosens Bioelectron; 2016 Nov; 85():924-929. PubMed ID: 27315517 [TBL] [Abstract][Full Text] [Related]
7. In vitro models of the blood-brain barrier. Czupalla CJ; Liebner S; Devraj K Methods Mol Biol; 2014; 1135():415-37. PubMed ID: 24510883 [TBL] [Abstract][Full Text] [Related]
8. Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Mukherjee T; Squillantea E; Gillespieb M; Shao J Drug Deliv; 2004; 11(1):11-8. PubMed ID: 15168786 [TBL] [Abstract][Full Text] [Related]
9. Porous Membrane Electrical Cell-Substrate Impedance Spectroscopy for Versatile Assessment of Biological Barriers In Vitro. Chebotarev O; Ugodnikov A; Simmons CA ACS Appl Bio Mater; 2024 Mar; 7(3):2000-2011. PubMed ID: 38447196 [TBL] [Abstract][Full Text] [Related]
10. Real-time measurement of the trans-epithelial electrical resistance in an organ-on-a-chip during cell proliferation. Liu J; Zhao W; Qin M; Luan X; Li Y; Zhao Y; Huang C; Zhang L; Li M Analyst; 2023 Jan; 148(3):516-524. PubMed ID: 36625356 [TBL] [Abstract][Full Text] [Related]
11. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. van der Helm MW; Henry OYF; Bein A; Hamkins-Indik T; Cronce MJ; Leineweber WD; Odijk M; van der Meer AD; Eijkel JCT; Ingber DE; van den Berg A; Segerink LI Lab Chip; 2019 Jan; 19(3):452-463. PubMed ID: 30632575 [TBL] [Abstract][Full Text] [Related]
12. Application of Impedance Spectroscopy for the Control of the Integrity of In Vitro Models of Barrier Tissues. Nikulin SV; Gerasimenko TN; Shilin SA; Zakharova GS; Gazizov IN; Poloznikov AA; Sakharov DA Bull Exp Biol Med; 2019 Feb; 166(4):512-516. PubMed ID: 30783835 [TBL] [Abstract][Full Text] [Related]
13. New Microfluidic System for Electrochemical Impedance Spectroscopy Assessment of Cell Culture Performance: Design and Development of New Electrode Material. Chmayssem A; Tanase CE; Verplanck N; Gougis M; Mourier V; Zebda A; Ghaemmaghami AM; Mailley P Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884254 [TBL] [Abstract][Full Text] [Related]
14. Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Blume LF; Denker M; Gieseler F; Kunze T Pharmazie; 2010 Jan; 65(1):19-24. PubMed ID: 20187574 [TBL] [Abstract][Full Text] [Related]
15. Online monitoring of transepithelial electrical resistance (TEER) in an apparatus for combined dissolution and permeation testing. Muendoerfer M; Schaefer UF; Koenig P; Walk JS; Loos P; Balbach S; Eichinger T; Lehr CM Int J Pharm; 2010 Jun; 392(1-2):134-40. PubMed ID: 20347022 [TBL] [Abstract][Full Text] [Related]
16. A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds. Schramm RA; Koslow MH; Nelson DA; Larsen M; Castracane J Biosensors (Basel); 2017 Aug; 7(3):. PubMed ID: 28858219 [TBL] [Abstract][Full Text] [Related]
17. Real-time monitoring of epithelial barrier function by impedance spectroscopy in a microfluidic platform. Fernandes J; Karra N; Bowring J; Reale R; James J; Blume C; Pell TJ; Rowan WC; Davies DE; Swindle EJ; Morgan H Lab Chip; 2022 May; 22(10):2041-2054. PubMed ID: 35485428 [TBL] [Abstract][Full Text] [Related]
18. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. Bossink EGBM; Zakharova M; de Bruijn DS; Odijk M; Segerink LI Lab Chip; 2021 May; 21(10):2040-2049. PubMed ID: 33861228 [TBL] [Abstract][Full Text] [Related]
19. [Expression of SLC30A10 and SLC23A3 Transporter mRNAs in Caco-2 Cells Correlates with an Increase in the Area of the Apical Membrane]. Nikulin SV; Knyazev EN; Poloznikov AA; Shilin SA; Gazizov IN; Zakharova GS; Gerasimenko TN Mol Biol (Mosk); 2018; 52(4):667-674. PubMed ID: 30113032 [TBL] [Abstract][Full Text] [Related]
20. Electrical Impedance Spectroscopy of plant cells in aqueous biological buffer solutions and their modelling using a unified electrical equivalent circuit over a wide frequency range: 4Hz to 20 GHz. Kadan-Jamal K; Sophocleous M; Jog A; Desagani D; Teig-Sussholz O; Georgiou J; Avni A; Shacham-Diamand Y Biosens Bioelectron; 2020 Nov; 168():112485. PubMed ID: 32896772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]