BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32514014)

  • 1. Unique age-related transcriptional signature in the nervous system of the long-lived red sea urchin Mesocentrotus franciscanus.
    Polinski JM; Kron N; Smith DR; Bodnar AG
    Sci Rep; 2020 Jun; 10(1):9182. PubMed ID: 32514014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin.
    Polinski JM; Castellano KR; Buckley KM; Bodnar AG
    Cell Rep; 2024 Apr; 43(4):114021. PubMed ID: 38564335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Senescence and Longevity of Sea Urchins.
    Amir Y; Insler M; Giller A; Gutman D; Atzmon G
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32443861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative damage and cellular defense mechanisms in sea urchin models of aging.
    Du C; Anderson A; Lortie M; Parsons R; Bodnar A
    Free Radic Biol Med; 2013 Oct; 63():254-63. PubMed ID: 23707327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional profiles of early stage red sea urchins (Mesocentrotus franciscanus) reveal differential regulation of gene expression across development.
    Wong JM; Gaitán-Espitia JD; Hofmann GE
    Mar Genomics; 2019 Dec; 48():100692. PubMed ID: 31227413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maintenance of somatic tissue regeneration with age in short- and long-lived species of sea urchins.
    Bodnar AG; Coffman JA
    Aging Cell; 2016 Aug; 15(4):778-87. PubMed ID: 27095483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related changes in gene expression in tissues of the sea urchin Strongylocentrotus purpuratus.
    Loram J; Bodnar A
    Mech Ageing Dev; 2012 May; 133(5):338-47. PubMed ID: 22475988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic profiles reveal age-related changes in coelomic fluid of sea urchin species with different life spans.
    Bodnar A
    Exp Gerontol; 2013 May; 48(5):525-30. PubMed ID: 23453931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial genome architecture of the giant red sea urchin Mesocentrotus franciscanus (Strongylocentrotidae, Echinoida).
    Gaitán-Espitia JD; Hofmann GE
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):591-2. PubMed ID: 24724935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of age-associated telomere shortening in long- and short-lived species of sea urchins.
    Francis N; Gregg T; Owen R; Ebert T; Bodnar A
    FEBS Lett; 2006 Aug; 580(19):4713-7. PubMed ID: 16876792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative senescence in sea urchins.
    Ebert TA
    Exp Gerontol; 2019 Jul; 122():92-98. PubMed ID: 31063808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus.
    Ebert TA
    Exp Gerontol; 2008 Aug; 43(8):734-8. PubMed ID: 18550313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin
    Gaitán-Espitia JD; Hofmann GE
    Ecol Evol; 2017 Apr; 7(8):2798-2811. PubMed ID: 28428870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomes of Strongylocentrotus franciscanus and Lytechinus variegatus: are there any genomic explanations for the two order of magnitude difference in the lifespan of sea urchins?
    Sergiev PV; Artemov AA; Prokhortchouk EB; Dontsova OA; Berezkin GV
    Aging (Albany NY); 2016 Feb; 8(2):260-71. PubMed ID: 26851889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and molecular mechanisms of negligible senescence: insight from the sea urchin.
    Bodnar AG
    Invertebr Reprod Dev; 2015 Jan; 59(sup1):23-27. PubMed ID: 26136616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomes reveal the involved genes in the sea urchin Mesocentrotus nudus exposed to high flow velocities.
    Tian R; Shi D; Yin D; Hu F; Ding J; Chang Y; Zhao C
    Sci Rep; 2022 Aug; 12(1):13493. PubMed ID: 35931770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of two actin genes in the sea urchin Strongylocentrotus franciscanus.
    Foran DR; Johnson PJ; Moore GP
    J Mol Evol; 1985; 22(2):108-16. PubMed ID: 2999411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Cloning and Sexually Dimorphic Expression Analysis of nanos2 in the Sea Urchin, Mesocentrotus nudus.
    Zhang J; Han X; Wang J; Liu BZ; Wei JL; Zhang WJ; Sun ZH; Chang YQ
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31159444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two promoter elements are necessary and sufficient for expression of the sea urchin U1 snRNA gene.
    Wendelburg BJ; Marzluff WF
    Nucleic Acids Res; 1992 Jul; 20(14):3743-51. PubMed ID: 1641340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gonadal transcriptomic analysis and identification of candidate sex-related genes in Mesocentrotus nudus.
    Sun ZH; Zhang J; Zhang WJ; Chang YQ
    Gene; 2019 May; 698():72-81. PubMed ID: 30825598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.