BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 32514094)

  • 1. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays.
    Brandenberg N; Hoehnel S; Kuttler F; Homicsko K; Ceroni C; Ringel T; Gjorevski N; Schwank G; Coukos G; Turcatti G; Lutolf MP
    Nat Biomed Eng; 2020 Sep; 4(9):863-874. PubMed ID: 32514094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designer matrices for intestinal stem cell and organoid culture.
    Gjorevski N; Sachs N; Manfrin A; Giger S; Bragina ME; Ordóñez-Morán P; Clevers H; Lutolf MP
    Nature; 2016 Nov; 539(7630):560-564. PubMed ID: 27851739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal Organoid Culture in Polymer Film-Based Microwell Arrays.
    Kakni P; Hueber R; Knoops K; López-Iglesias C; Truckenmüller R; Habibovic P; Giselbrecht S
    Adv Biosyst; 2020 Oct; 4(10):e2000126. PubMed ID: 32734713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of 3D Intestinal Organoid Cultures from Intestinal Stem Cells.
    Sugimoto S; Sato T
    Methods Mol Biol; 2017; 1612():97-105. PubMed ID: 28634937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem cell-derived organoids and their application for medical research and patient treatment.
    Bartfeld S; Clevers H
    J Mol Med (Berl); 2017 Jul; 95(7):729-738. PubMed ID: 28391362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammary Tumor Organoid Culture in Non-Adhesive Alginate for Luminal Mechanics and High-Throughput Drug Screening.
    Fang G; Lu H; Rodriguez de la Fuente L; Law AMK; Lin G; Jin D; Gallego-Ortega D
    Adv Sci (Weinh); 2021 Nov; 8(21):e2102418. PubMed ID: 34494727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids.
    Mun SJ; Ryu JS; Lee MO; Son YS; Oh SJ; Cho HS; Son MY; Kim DS; Kim SJ; Yoo HJ; Lee HJ; Kim J; Jung CR; Chung KS; Son MJ
    J Hepatol; 2019 Nov; 71(5):970-985. PubMed ID: 31299272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioengineering Approaches for the Advanced Organoid Research.
    Yi SA; Zhang Y; Rathnam C; Pongkulapa T; Lee KB
    Adv Mater; 2021 Nov; 33(45):e2007949. PubMed ID: 34561899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organogenesis in a dish: modeling development and disease using organoid technologies.
    Lancaster MA; Knoblich JA
    Science; 2014 Jul; 345(6194):1247125. PubMed ID: 25035496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials and biosensors in intestinal organoid culture, a progress review.
    Huang J; Jiang Y; Ren Y; Liu Y; Wu X; Li Z; Ren J
    J Biomed Mater Res A; 2020 May; 108(7):1501-1508. PubMed ID: 32170907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of organoid technology: Lessons learnt in Co-Culture systems from developmental biology.
    Zahmatkesh E; Khoshdel-Rad N; Mirzaei H; Shpichka A; Timashev P; Mahmoudi T; Vosough M
    Dev Biol; 2021 Jul; 475():37-53. PubMed ID: 33684433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-viscosity matrix suspension culture enables scalable analysis of patient-derived organoids and tumoroids from the large intestine.
    Hirokawa Y; Clarke J; Palmieri M; Tan T; Mouradov D; Li S; Lin C; Li F; Luo H; Wu K; Faux M; Tan CW; Lee M; Gard G; Gibbs P; Burgess AW; Sieber OM
    Commun Biol; 2021 Sep; 4(1):1067. PubMed ID: 34518628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal Crypt Organoid: Isolation of Intestinal Stem Cells, In Vitro Culture, and Optical Observation.
    Chen Y; Li C; Tsai YH; Tseng SH
    Methods Mol Biol; 2019; 1576():215-228. PubMed ID: 28337708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture.
    Gjorevski N; Lutolf MP
    Nat Protoc; 2017 Nov; 12(11):2263-2274. PubMed ID: 28981121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening.
    Du Y; Li X; Niu Q; Mo X; Qui M; Ma T; Kuo CJ; Fu H
    J Mol Cell Biol; 2020 Aug; 12(8):630-643. PubMed ID: 32678871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organoids: Modeling Development and the Stem Cell Niche in a Dish.
    Kretzschmar K; Clevers H
    Dev Cell; 2016 Sep; 38(6):590-600. PubMed ID: 27676432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular self-assembly and biomaterials-based organoid models of development and diseases.
    Shah SB; Singh A
    Acta Biomater; 2017 Apr; 53():29-45. PubMed ID: 28159716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Culture of Intestinal Organoids with Blebbistatin.
    Qi Z; Chen YG
    Methods Mol Biol; 2019; 1576():113-121. PubMed ID: 29589266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform.
    Reid JA; Mollica PA; Bruno RD; Sachs PC
    Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.