BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32514116)

  • 1. Changes in the transcriptome, ploidy, and optimal light intensity of a cryptomonad upon integration into a kleptoplastic dinoflagellate.
    Onuma R; Hirooka S; Kanesaki Y; Fujiwara T; Yoshikawa H; Miyagishima SY
    ISME J; 2020 Oct; 14(10):2407-2423. PubMed ID: 32514116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kleptochloroplast Enlargement, Karyoklepty and the Distribution of the Cryptomonad Nucleus in Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae).
    Onuma R; Horiguchi T
    Protist; 2015 May; 166(2):177-95. PubMed ID: 25771111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological transition in kleptochloroplasts after ingestion in the dinoflagellates Amphidinium poecilochroum and Gymnodinium aeruginosum (Dinophyceae).
    Onuma R; Horiguchi T
    Protist; 2013 Sep; 164(5):622-42. PubMed ID: 23880436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of irradiance and prey deprivation on growth, cell carbon and photosynthetic activity of the freshwater kleptoplastidic dinoflagellate Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae).
    Drumm K; Liebst-Olsen M; Daugbjerg N; Moestrup Ø; Hansen PJ
    PLoS One; 2017; 12(8):e0181751. PubMed ID: 28763480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematics of a kleptoplastidal dinoflagellate, Gymnodinium eucyaneum Hu (Dinophyceae), and its cryptomonad endosymbiont.
    Xia S; Zhang Q; Zhu H; Cheng Y; Liu G; Hu Z
    PLoS One; 2013; 8(1):e53820. PubMed ID: 23308288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set.
    Tanifuji G; Onodera NT; Wheeler TJ; Dlutek M; Donaher N; Archibald JM
    Genome Biol Evol; 2011; 3():44-54. PubMed ID: 21147880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
    Patron NJ; Inagaki Y; Keeling PJ
    Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Insight into the diversity and evolution of the cryptomonad nucleomorph genome.
    Lane CE; Khan H; MacKinnon M; Fong A; Theophilou S; Archibald JM;
    Mol Biol Evol; 2006 May; 23(5):856-65. PubMed ID: 16306383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements.
    George EE; Barcytė D; Lax G; Livingston S; Tashyreva D; Husnik F; Lukeš J; Eliáš M; Keeling PJ
    Curr Biol; 2023 May; 33(10):1982-1996.e4. PubMed ID: 37116483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taxonomy and phylogeny of a new kleptoplastidal dinoflagellate, Gymnodinium myriopyrenoides sp. nov. (Gymnodiniales, Dinophyceae), and its cryptophyte symbiont.
    Yamaguchi H; Nakayama T; Kai A; Inouye I
    Protist; 2011 Oct; 162(4):650-67. PubMed ID: 21497133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the genus Mesodinium I: ultrastructure and description of Mesodinium chamaeleon n. sp., a benthic marine species with green or red chloroplasts.
    Moestrup O; Garcia-Cuetos L; Hansen PJ; Fenchel T
    J Eukaryot Microbiol; 2012; 59(1):20-39. PubMed ID: 22221919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis.
    Hehenberger E; Gast RJ; Keeling PJ
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17934-17942. PubMed ID: 31427512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate.
    Gornik SG; Febrimarsa ; Cassin AM; MacRae JI; Ramaprasad A; Rchiad Z; McConville MJ; Bacic A; McFadden GI; Pain A; Waller RF
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5767-72. PubMed ID: 25902514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates.
    Burki F; Imanian B; Hehenberger E; Hirakawa Y; Maruyama S; Keeling PJ
    Eukaryot Cell; 2014 Feb; 13(2):246-55. PubMed ID: 24297445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EFL GTPase in cryptomonads and the distribution of EFL and EF-1alpha in chromalveolates.
    Gile GH; Patron NJ; Keeling PJ
    Protist; 2006 Oct; 157(4):435-44. PubMed ID: 16904374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cryptomonad nucleomorph.
    McFadden GI
    Protoplasma; 2017 Sep; 254(5):1903-1907. PubMed ID: 28828570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors.
    Dorrell RG; Howe CJ
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18879-84. PubMed ID: 23112181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic and Transcriptomic Analysis Reveals Spliced Leader Trans-Splicing in Cryptomonads.
    Roy SW
    Genome Biol Evol; 2017 Mar; 9(3):468-473. PubMed ID: 28391323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The four genomes of the alga Pyrenomonas salina (Cryptophyta).
    Maier UG
    Biosystems; 1992; 28(1-3):69-73. PubMed ID: 1292668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.