These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 32514125)
1. Prediction of the sequence-specific cleavage activity of Cas9 variants. Kim N; Kim HK; Lee S; Seo JH; Choi JW; Park J; Min S; Yoon S; Cho SR; Kim HH Nat Biotechnol; 2020 Nov; 38(11):1328-1336. PubMed ID: 32514125 [TBL] [Abstract][Full Text] [Related]
2. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Kim HK; Lee S; Kim Y; Park J; Min S; Choi JW; Huang TP; Yoon S; Liu DR; Kim HH Nat Biomed Eng; 2020 Jan; 4(1):111-124. PubMed ID: 31937939 [TBL] [Abstract][Full Text] [Related]
3. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Allemailem KS; Almatroodi SA; Almatroudi A; Alrumaihi F; Al Abdulmonem W; Al-Megrin WAI; Aljamaan AN; Rahmani AH; Khan AA Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108214 [TBL] [Abstract][Full Text] [Related]
4. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Kulcsár PI; Tálas A; Huszár K; Ligeti Z; Tóth E; Weinhardt N; Fodor E; Welker E Genome Biol; 2017 Oct; 18(1):190. PubMed ID: 28985763 [TBL] [Abstract][Full Text] [Related]
6. In-depth assessment of the PAM compatibility and editing activities of Cas9 variants. Zhang W; Yin J; Zhang-Ding Z; Xin C; Liu M; Wang Y; Ai C; Hu J Nucleic Acids Res; 2021 Sep; 49(15):8785-8795. PubMed ID: 34133740 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896 [TBL] [Abstract][Full Text] [Related]
8. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs. Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958 [TBL] [Abstract][Full Text] [Related]
9. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Miller SM; Wang T; Randolph PB; Arbab M; Shen MW; Huang TP; Matuszek Z; Newby GA; Rees HA; Liu DR Nat Biotechnol; 2020 Apr; 38(4):471-481. PubMed ID: 32042170 [TBL] [Abstract][Full Text] [Related]
10. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences. Hua K; Tao X; Han P; Wang R; Zhu JK Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636 [TBL] [Abstract][Full Text] [Related]
11. Structural insights into a high fidelity variant of SpCas9. Guo M; Ren K; Zhu Y; Tang Z; Wang Y; Zhang B; Huang Z Cell Res; 2019 Mar; 29(3):183-192. PubMed ID: 30664728 [TBL] [Abstract][Full Text] [Related]
12. High-Throughput Screens of PAM-Flexible Cas9 Variants for Gene Knockout and Transcriptional Modulation. Legut M; Daniloski Z; Xue X; McKenzie D; Guo X; Wessels HH; Sanjana NE Cell Rep; 2020 Mar; 30(9):2859-2868.e5. PubMed ID: 32130891 [TBL] [Abstract][Full Text] [Related]
13. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652 [TBL] [Abstract][Full Text] [Related]
14. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9. Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720 [TBL] [Abstract][Full Text] [Related]
15. Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster. Ni XY; Zhou ZD; Huang J; Qiao X Arch Insect Biochem Physiol; 2020 May; 104(1):e21662. PubMed ID: 32027059 [TBL] [Abstract][Full Text] [Related]
16. High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Idoko-Akoh A; Taylor L; Sang HM; McGrew MJ Sci Rep; 2018 Oct; 8(1):15126. PubMed ID: 30310080 [TBL] [Abstract][Full Text] [Related]
17. Expanding the range of CRISPR/Cas9-directed genome editing in soybean. He R; Zhang P; Yan Y; Yu C; Jiang L; Zhu Y; Wang D aBIOTECH; 2022 Jun; 3(2):89-98. PubMed ID: 36312444 [TBL] [Abstract][Full Text] [Related]
18. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid. Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097 [TBL] [Abstract][Full Text] [Related]
19. [The Development of SpCas9 Variants with High Specificity and Efficiency Based on the HH Theory]. Wang GH; Wang CM; Wu XJ; Chu T; Huang DW; Li J Mol Biol (Mosk); 2024; 58(1):157-159. PubMed ID: 38943587 [TBL] [Abstract][Full Text] [Related]
20. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Casini A; Olivieri M; Petris G; Montagna C; Reginato G; Maule G; Lorenzin F; Prandi D; Romanel A; Demichelis F; Inga A; Cereseto A Nat Biotechnol; 2018 Mar; 36(3):265-271. PubMed ID: 29431739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]