These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32514280)

  • 1. Examining the accuracy of trackways for predicting gait selection and speed of locomotion.
    Marmol-Guijarro A; Nudds R; Folkow L; Codd J
    Front Zool; 2020; 17():17. PubMed ID: 32514280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does posture explain the kinematic differences in a grounded running gait between male and female Svalbard rock ptarmigan (
    Marmol-Guijarro A; Nudds R; Folkow L; Lees J; Codd J
    Polar Biol; 2021; 44(6):1141-1152. PubMed ID: 34720374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Gaits of an Ancient Crocodile-Line Archosaur Through Trajectory Optimization, With Comparison to Fossil Trackways.
    Polet DT; Hutchinson JR
    Front Bioeng Biotechnol; 2021; 9():800311. PubMed ID: 35186914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terrestrial locomotion of the Svalbard rock ptarmigan: comparing field and laboratory treadmill studies.
    Marmol-Guijarro AC; Nudds RL; Marrin JC; Folkow LP; Codd JR
    Sci Rep; 2019 Aug; 9(1):11451. PubMed ID: 31391515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The locomotor kinematics of Asian and African elephants: changes with speed and size.
    Hutchinson JR; Schwerda D; Famini DJ; Dale RH; Fischer MS; Kram R
    J Exp Biol; 2006 Oct; 209(Pt 19):3812-27. PubMed ID: 16985198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low leg compliance permits grounded running at speeds where the inverted pendulum model gets airborne.
    Andrada E; Blickhan R; Ogihara N; Rode C
    J Theor Biol; 2020 Jun; 494():110227. PubMed ID: 32142807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trunk and leg kinematics of grounded and aerial running in bipedal macaques.
    Blickhan R; Andrada E; Hirasaki E; Ogihara N
    J Exp Biol; 2021 Jan; 224(Pt 2):. PubMed ID: 33288531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs.
    Lallensack JN; Falkingham PL
    Curr Biol; 2022 Apr; 32(7):1635-1640.e4. PubMed ID: 35240050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics and center of mass mechanics during terrestrial locomotion in northern lapwings (Vanellus vanellus, Charadriiformes).
    Nyakatura JA; Andrada E; Grimm N; Weise H; Fischer MS
    J Exp Zool A Ecol Genet Physiol; 2012 Nov; 317(9):580-94. PubMed ID: 22927254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ability of the planar spring-mass model to predict mechanical parameters in running humans.
    Bullimore SR; Burn JF
    J Theor Biol; 2007 Oct; 248(4):686-95. PubMed ID: 17681550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates.
    Nyakatura JA; Fischer MS; Schmidt M
    Am J Phys Anthropol; 2008 Jan; 135(1):13-26. PubMed ID: 17786994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Snow Properties on Speed and Gait Choice in the Svalbard Rock Ptarmigan (
    Mármol-Guijarro A; Nudds R; Folkow L; Sellers W; Falkingham P; Codd J
    Integr Org Biol; 2021; 3(1):obab021. PubMed ID: 34405129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods.
    Reilly SM; McElroy EJ; Biknevicius AR
    Zoology (Jena); 2007; 110(4):271-89. PubMed ID: 17482802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Step Forward: Functional Diversity and Emerging Themes of Slow-Speed Locomotion in Vertebrates.
    Gibb AC; Amplo H; Struble M; Kawano SM
    Integr Comp Biol; 2022 Sep; ():. PubMed ID: 36124746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Level locomotion in wood ants: evidence for grounded running.
    Reinhardt L; Blickhan R
    J Exp Biol; 2014 Jul; 217(Pt 13):2358-70. PubMed ID: 24744414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady and transient coordination structures of walking and running.
    Lamoth CJ; Daffertshofer A; Huys R; Beek PJ
    Hum Mov Sci; 2009 Jun; 28(3):371-86. PubMed ID: 19027972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal.
    Parchman AJ; Reilly SM; Biknevicius AR
    J Exp Biol; 2003 Apr; 206(Pt 8):1379-88. PubMed ID: 12624172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bipedal gait versatility in the Japanese macaque (Macaca fuscata).
    Ogihara N; Hirasaki E; Andrada E; Blickhan R
    J Hum Evol; 2018 Dec; 125():2-14. PubMed ID: 30502894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.