BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 32514393)

  • 1. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering.
    Cao Y; Yang S; Zhao D; Li Y; Cheong SS; Han D; Li Q
    J Orthop Translat; 2020 Jul; 23():89-100. PubMed ID: 32514393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair.
    Huang C; Zhang X; Luo H; Pan J; Cui W; Cheng B; Zhao S; Chen G
    J Shoulder Elbow Surg; 2021 Mar; 30(3):544-553. PubMed ID: 32650072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aligned Gelatin Microribbon Scaffolds with Hydroxyapatite Gradient for Engineering the Bone-Tendon Interface.
    Stanton AE; Tong X; Jing SL; Behn A; Storaci H; Yang F
    Tissue Eng Part A; 2022 Aug; 28(15-16):712-723. PubMed ID: 35229651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Bioprinting of a Structure-, Composition-, and Mechanics-Graded Biomimetic Scaffold Coated with Specific Decellularized Extracellular Matrix to Improve the Tendon-to-Bone Healing.
    Zhang X; Song W; Han K; Fang Z; Cho E; Huangfu X; He Y; Zhao J
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):28964-28980. PubMed ID: 37306312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering.
    Yang G; Lin H; Rothrauff BB; Yu S; Tuan RS
    Acta Biomater; 2016 Apr; 35():68-76. PubMed ID: 26945631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental study on tissue engineered cartilage constructed by three-dimensional bioprinted human adipose-derived stem cells combined with gelatin methacryloyl].
    Mu L; Zeng J; Huang Y; Lin Y; Jiang H; Teng L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):896-903. PubMed ID: 34308600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA.
    Buyuksungur S; Hasirci V; Hasirci N
    J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    J Biomed Mater Res A; 2008 Jul; 86(1):1-12. PubMed ID: 18442111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering.
    Xu Y; Peng J; Richards G; Lu S; Eglin D
    J Orthop Translat; 2019 Jul; 18():128-141. PubMed ID: 31508316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff.
    Bai L; Han Q; Meng Z; Chen B; Qu X; Xu M; Su Y; Qiu Z; Xue Y; He J; Zhang J; Yin Z
    Acta Biomater; 2022 Dec; 154():275-289. PubMed ID: 36328126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model.
    Yea JH; Bae TS; Kim BJ; Cho YW; Jo CH
    Acta Biomater; 2020 Sep; 114():104-116. PubMed ID: 32682057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration.
    Tang P; Song P; Peng Z; Zhang B; Gui X; Wang Y; Liao X; Chen Z; Zhang Z; Fan Y; Li Z; Cen Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112423. PubMed ID: 34702546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with
    Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration.
    Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds.
    Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG
    Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.
    Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ
    Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration.
    Jiang X; Wu S; Kuss M; Kong Y; Shi W; Streubel PN; Li T; Duan B
    Bioact Mater; 2020 Sep; 5(3):636-643. PubMed ID: 32405578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.
    Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal Stem Cell Sheets for Engineering of the Tendon-Bone Interface.
    Berntsen L; Forghani A; Hayes DJ
    Tissue Eng Part A; 2022 Apr; 28(7-8):341-352. PubMed ID: 34476994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.