These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. [Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies]. Wang J; Huang J; Xu R Yi Chuan; 2019 May; 41(5):422-429. PubMed ID: 31106778 [TBL] [Abstract][Full Text] [Related]
27. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish. Prykhozhij SV; Caceres L; Berman JN Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171 [TBL] [Abstract][Full Text] [Related]
28. Designed nucleases for targeted genome editing. Lee J; Chung JH; Kim HM; Kim DW; Kim H Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767 [TBL] [Abstract][Full Text] [Related]
29. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
30. The genome editing revolution: A CRISPR-Cas TALE off-target story. Stella S; Montoya G Bioessays; 2016 Jul; 38 Suppl 1():S4-S13. PubMed ID: 27417121 [TBL] [Abstract][Full Text] [Related]
31. Efficient SSA-mediated precise genome editing using CRISPR/Cas9. Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411 [TBL] [Abstract][Full Text] [Related]
32. [Genome editing technology: from basics to applications]. Tamai M Rinsho Ketsueki; 2022; 63(11):1542-1550. PubMed ID: 36476796 [TBL] [Abstract][Full Text] [Related]
33. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances. Soda N; Verma L; Giri J Plant Physiol Biochem; 2018 Oct; 131():2-11. PubMed ID: 29103811 [TBL] [Abstract][Full Text] [Related]
34. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154 [TBL] [Abstract][Full Text] [Related]
35. [Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals]. Li GL; Yang SX; Wu ZF; Zhang XW Yi Chuan; 2020 Jul; 42(7):641-656. PubMed ID: 32694104 [TBL] [Abstract][Full Text] [Related]
36. A glance at genome editing with CRISPR-Cas9 technology. Barman A; Deb B; Chakraborty S Curr Genet; 2020 Jun; 66(3):447-462. PubMed ID: 31691023 [TBL] [Abstract][Full Text] [Related]
37. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Hu X; Meng X; Liu Q; Li J; Wang K Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576 [TBL] [Abstract][Full Text] [Related]
38. Application of genome editing technologies to the study and treatment of hematological disease. Pellagatti A; Dolatshad H; Yip BH; Valletta S; Boultwood J Adv Biol Regul; 2016 Jan; 60():122-134. PubMed ID: 26433620 [TBL] [Abstract][Full Text] [Related]
39. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Kolli N; Lu M; Maiti P; Rossignol J; Dunbar GL Neurochem Int; 2018 Jan; 112():187-196. PubMed ID: 28732771 [TBL] [Abstract][Full Text] [Related]
40. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase. Li K; Cai D; Wang Z; He Z; Chen S Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]