These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 32514844)
1. Retinal Image Analysis for Ocular Disease Prediction Using Rule Mining Algorithms. Karthiyayini R; Shenbagavadivu N Interdiscip Sci; 2021 Sep; 13(3):451-462. PubMed ID: 32514844 [TBL] [Abstract][Full Text] [Related]
2. An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus. Singh LK; Pooja ; Garg H; Khanna M; Bhadoria RS Med Biol Eng Comput; 2021 Feb; 59(2):333-353. PubMed ID: 33439453 [TBL] [Abstract][Full Text] [Related]
3. Retinal image analysis for disease screening through local tetra patterns. Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336 [TBL] [Abstract][Full Text] [Related]
4. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Issac A; Partha Sarathi M; Dutta MK Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351 [TBL] [Abstract][Full Text] [Related]
5. Automatic segmentation of pigment deposits in retinal fundus images of Retinitis Pigmentosa. Brancati N; Frucci M; Gragnaniello D; Riccio D; Di Iorio V; Di Perna L Comput Med Imaging Graph; 2018 Jun; 66():73-81. PubMed ID: 29573581 [TBL] [Abstract][Full Text] [Related]
6. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. Long S; Huang X; Chen Z; Pardhan S; Zheng D Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539 [TBL] [Abstract][Full Text] [Related]
7. Automated "disease/no disease" grading of age-related macular degeneration by an image mining approach. Zheng Y; Hijazi MH; Coenen F Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8310-8. PubMed ID: 23150624 [TBL] [Abstract][Full Text] [Related]
8. Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Haleem MS; Han L; van Hemert J; Li B Comput Med Imaging Graph; 2013; 37(7-8):581-96. PubMed ID: 24139134 [TBL] [Abstract][Full Text] [Related]
9. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Mvoulana A; Kachouri R; Akil M Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937 [TBL] [Abstract][Full Text] [Related]
10. Macula segmentation and fovea localization employing image processing and heuristic based clustering for automated retinal screening. R G; Balasubramanian L Comput Methods Programs Biomed; 2018 Jul; 160():153-163. PubMed ID: 29728242 [TBL] [Abstract][Full Text] [Related]
11. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. M S; Issac A; Dutta MK Int J Med Inform; 2018 Feb; 110():52-70. PubMed ID: 29331255 [TBL] [Abstract][Full Text] [Related]
12. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Mitra A; Banerjee PS; Roy S; Roy S; Setua SK Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079 [TBL] [Abstract][Full Text] [Related]
13. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images. Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702 [TBL] [Abstract][Full Text] [Related]
14. Automated interpretation of optic nerve images: a data mining framework for glaucoma diagnostic support. Abidi SS; Artes PH; Yun S; Yu J Stud Health Technol Inform; 2007; 129(Pt 2):1309-13. PubMed ID: 17911926 [TBL] [Abstract][Full Text] [Related]
15. An ensembling approach for optic cup detection based on spatial heuristic analysis in retinal fundus images. Wong DW; Liu J; Tan NM; Fengshou Y; Cheung C; Baskaran M; Aung T; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1426-9. PubMed ID: 23366168 [TBL] [Abstract][Full Text] [Related]
16. Automatic Detection of Genetics and Genomics of Eye Disease Using Deep Assimilation Learning Algorithm. Sikkandar MY Interdiscip Sci; 2021 Jun; 13(2):286-298. PubMed ID: 33398790 [TBL] [Abstract][Full Text] [Related]
17. Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images. Haleem MS; Han L; Hemert Jv; Fleming A; Pasquale LR; Silva PS; Song BJ; Aiello LP J Med Syst; 2016 Jun; 40(6):132. PubMed ID: 27086033 [TBL] [Abstract][Full Text] [Related]
18. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Köse C; Sevik U; Ikibaş C; Erdöl H Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250 [TBL] [Abstract][Full Text] [Related]
19. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques. Akyol K; Şen B; Bayır Ş Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272 [TBL] [Abstract][Full Text] [Related]