These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32514884)
41. Label- and slide-free tissue histology using 3D epi-mode quantitative phase imaging and virtual H&E staining. Abraham TM; Costa PC; Filan C; Guang Z; Zhang Z; Neill S; Olson JJ; Levenson R; Robles FE ArXiv; 2023 Jun; ():. PubMed ID: 37396611 [TBL] [Abstract][Full Text] [Related]
42. Virtual Interpolation Images of Tumor Development and Growth on Breast Ultrasound Image Synthesis With Deep Convolutional Generative Adversarial Networks. Fujioka T; Kubota K; Mori M; Katsuta L; Kikuchi Y; Kimura K; Kimura M; Adachi M; Oda G; Nakagawa T; Kitazume Y; Tateishi U J Ultrasound Med; 2021 Jan; 40(1):61-69. PubMed ID: 32592409 [TBL] [Abstract][Full Text] [Related]
44. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
45. Stain transformation using Mueller matrix guided generative adversarial networks. Fan J; Zhang X; Zeng N; Liu S; He H; Luo L; He C; Ma H Opt Lett; 2024 Sep; 49(18):5135-5138. PubMed ID: 39270248 [TBL] [Abstract][Full Text] [Related]
46. B-mode ultrasound images of the carotid artery wall: correlation of ultrasound with histological measurements. Gamble G; Beaumont B; Smith H; Zorn J; Sanders G; Merrilees M; MacMahon S; Sharpe N Atherosclerosis; 1993 Sep; 102(2):163-73. PubMed ID: 8251002 [TBL] [Abstract][Full Text] [Related]
47. High-content image generation for drug discovery using generative adversarial networks. Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280 [TBL] [Abstract][Full Text] [Related]
48. Transfer Learning for Toxoplasma gondii Recognition. Li S; Li A; Molina Lara DA; Gómez Marín JE; Juhas M; Zhang Y mSystems; 2020 Jan; 5(1):. PubMed ID: 31992631 [No Abstract] [Full Text] [Related]
50. A Data-Efficient Framework for the Identification of Vaginitis Based on Deep Learning. Hao R; Liu L; Zhang J; Wang X; Liu J; Du X; He W; Liao J; Liu L; Mao Y J Healthc Eng; 2022; 2022():1929371. PubMed ID: 35265294 [TBL] [Abstract][Full Text] [Related]
51. Convolutional Neural Network for Segmentation and Measurement of Intima Media Thickness. S S; K B J; C R; Madian N; T S J Med Syst; 2018 Jul; 42(8):154. PubMed ID: 29987622 [TBL] [Abstract][Full Text] [Related]
52. Synthesis of diagnostic quality cancer pathology images by generative adversarial networks. Levine AB; Peng J; Farnell D; Nursey M; Wang Y; Naso JR; Ren H; Farahani H; Chen C; Chiu D; Talhouk A; Sheffield B; Riazy M; Ip PP; Parra-Herran C; Mills A; Singh N; Tessier-Cloutier B; Salisbury T; Lee J; Salcudean T; Jones SJ; Huntsman DG; Gilks CB; Yip S; Bashashati A J Pathol; 2020 Oct; 252(2):178-188. PubMed ID: 32686118 [TBL] [Abstract][Full Text] [Related]
53. Deep learning-assisted co-registration of full-spectral autofluorescence lifetime microscopic images with H&E-stained histology images. Wang Q; Fernandes S; Williams GOS; Finlayson N; Akram AR; Dhaliwal K; Hopgood JR; Vallejo M Commun Biol; 2022 Oct; 5(1):1119. PubMed ID: 36271298 [TBL] [Abstract][Full Text] [Related]
54. Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation. Hagiwara A; Otsuka Y; Hori M; Tachibana Y; Yokoyama K; Fujita S; Andica C; Kamagata K; Irie R; Koshino S; Maekawa T; Chougar L; Wada A; Takemura MY; Hattori N; Aoki S AJNR Am J Neuroradiol; 2019 Feb; 40(2):224-230. PubMed ID: 30630834 [TBL] [Abstract][Full Text] [Related]
55. An adaptive digital stain separation method for deep learning-based automatic cell profile counts. Dave P; Alahmari S; Goldgof D; Hall LO; Morera H; Mouton PR J Neurosci Methods; 2021 Apr; 354():109102. PubMed ID: 33607171 [TBL] [Abstract][Full Text] [Related]
56. On the Acceptance of "Fake" Histopathology: A Study on Frozen Sections Optimized with Deep Learning. Siller M; Stangassinger LM; Kreutzer C; Boor P; Bulow RD; Kraus TJF; von Stillfried S; Wolfl S; Couillard-Despres S; Oostingh GJ; Hittmair A; Gadermayr M J Pathol Inform; 2022; 13():6. PubMed ID: 35136673 [TBL] [Abstract][Full Text] [Related]
57. Segmentation of histological images and fibrosis identification with a convolutional neural network. Fu X; Liu T; Xiong Z; Smaill BH; Stiles MK; Zhao J Comput Biol Med; 2018 Jul; 98():147-158. PubMed ID: 29793096 [TBL] [Abstract][Full Text] [Related]
58. Hybrid Unified Deep Learning Network for Highly Precise Gleason Grading of Prostate Cancer. Poojitha UP; Lal Sharma S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():899-903. PubMed ID: 31946039 [TBL] [Abstract][Full Text] [Related]
59. Impact of pre-analytical variables on deep learning accuracy in histopathology. Jones AD; Graff JP; Darrow M; Borowsky A; Olson KA; Gandour-Edwards R; Datta Mitra A; Wei D; Gao G; Durbin-Johnson B; Rashidi HH Histopathology; 2019 Jul; 75(1):39-53. PubMed ID: 30801768 [TBL] [Abstract][Full Text] [Related]
60. SHIFT: speedy histological-to-immunofluorescent translation of a tumor signature enabled by deep learning. Burlingame EA; McDonnell M; Schau GF; Thibault G; Lanciault C; Morgan T; Johnson BE; Corless C; Gray JW; Chang YH Sci Rep; 2020 Oct; 10(1):17507. PubMed ID: 33060677 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]