These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 32515215)
1. Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. Kamath V; Chandra P; Jeppu GP Int J Phytoremediation; 2020; 22(12):1278-1294. PubMed ID: 32515215 [TBL] [Abstract][Full Text] [Related]
2. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. Manquián-Cerda K; Cruces E; Angélica Rubio M; Reyes C; Arancibia-Miranda N Ecotoxicol Environ Saf; 2017 Nov; 145():69-77. PubMed ID: 28708983 [TBL] [Abstract][Full Text] [Related]
3. Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Cao D; Jin X; Gan L; Wang T; Chen Z Chemosphere; 2016 Sep; 159():23-31. PubMed ID: 27268791 [TBL] [Abstract][Full Text] [Related]
4. Removal of Ni(II) and Cu(II) from aqueous solutions using 'green' zero-valent iron nanoparticles produced by oak and mulberry leaf extracts. Poguberović SS; Krčmar DM; Dalmacija BD; Maletić SP; Tomašević-Pilipović DD; Kerkez DV; Rončević SD Water Sci Technol; 2016 Nov; 74(9):2115-2123. PubMed ID: 27842031 [TBL] [Abstract][Full Text] [Related]
5. Non-conventional, burnt Qaiyum MA; Samal PP; Dutta S; Dey B; Dey S Int J Phytoremediation; 2024; 26(5):594-607. PubMed ID: 37723603 [TBL] [Abstract][Full Text] [Related]
6. Removal of As(V) by iron-based nanoparticles synthesized via the complexation of biomolecules in green tea extracts and an iron salt. Wu Z; Su X; Lin Z; Khan NI; Owens G; Chen Z Sci Total Environ; 2021 Apr; 764():142883. PubMed ID: 33121781 [TBL] [Abstract][Full Text] [Related]
7. Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption. Silveira C; Shimabuku-Biadola QL; Silva MF; Vieira MF; Bergamasco R Environ Sci Pollut Res Int; 2020 Feb; 27(6):6088-6102. PubMed ID: 31865561 [TBL] [Abstract][Full Text] [Related]
8. Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Huang L; Weng X; Chen Z; Megharaj M; Naidu R Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():295-301. PubMed ID: 24793479 [TBL] [Abstract][Full Text] [Related]
9. Green production of zero-valent iron nanoparticles using tree leaf extracts. Machado S; Pinto SL; Grosso JP; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2013 Feb; 445-446():1-8. PubMed ID: 23298788 [TBL] [Abstract][Full Text] [Related]
10. Green synthesis of Ag El Messaoudi N; El Mouden A; Fernine Y; El Khomri M; Bouich A; Faska N; Ciğeroğlu Z; Américo-Pinheiro JHP; Jada A; Lacherai A Environ Sci Pollut Res Int; 2023 Jul; 30(34):81352-81369. PubMed ID: 35729389 [TBL] [Abstract][Full Text] [Related]
11. Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic (V) in mine wastewater. Lin Y; Jin X; Khan NI; Owens G; Chen Z J Environ Manage; 2022 Jan; 301():113838. PubMed ID: 34592664 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of iron oxide nanoparticles mediated by Camellia sinensis var. Assamica for Cr(VI) adsorption and detoxification. Jawed A; Golder AK; Pandey LM Bioresour Technol; 2023 May; 376():128816. PubMed ID: 36868429 [TBL] [Abstract][Full Text] [Related]
13. Green Synthesis of Iron Oxide Nanoparticles by RS Lichen Extract and its Application in Removing Heavy Metals of Lead and Cadmium. Arjaghi SK; Alasl MK; Sajjadi N; Fataei E; Rajaei GE Biol Trace Elem Res; 2021 Feb; 199(2):763-768. PubMed ID: 32643097 [TBL] [Abstract][Full Text] [Related]
14. Assessing South American Guadua chacoensis bamboo biochar and Fe Alchouron J; Navarathna C; Chludil HD; Dewage NB; Perez F; Hassan EB; Pittman CU; Vega AS; Mlsna TE Sci Total Environ; 2020 Mar; 706():135943. PubMed ID: 31862592 [TBL] [Abstract][Full Text] [Related]
15. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates. Dickson D; Liu G; Cai Y J Environ Manage; 2017 Jan; 186(Pt 2):261-267. PubMed ID: 27480915 [TBL] [Abstract][Full Text] [Related]
16. Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes. Xiao C; Li H; Zhao Y; Zhang X; Wang X J Environ Manage; 2020 Dec; 275():111262. PubMed ID: 32858272 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, characterization and application of magnetic nanoparticles modified with Fe-Mn binary oxide for enhanced removal of As(III) and As(V). Nikić J; Watson MA; Isakovski MK; Tubić A; Šolić M; Kordić B; Agbaba J Environ Technol; 2021 Jun; 42(16):2527-2539. PubMed ID: 31854235 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from Vidovix TB; Quesada HB; Bergamasco R; Vieira MF; Vieira AMS Environ Technol; 2022 Aug; 43(20):3047-3063. PubMed ID: 33826464 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of As(V) removal by green synthesized iron nanoparticles. Wu Z; Su X; Lin Z; Owens G; Chen Z J Hazard Mater; 2019 Nov; 379():120811. PubMed ID: 31254786 [TBL] [Abstract][Full Text] [Related]
20. Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications. Das TK; Sakthivel TS; Jeyaranjan A; Seal S; Bezbaruah AN Chemosphere; 2020 Aug; 253():126702. PubMed ID: 32302903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]