These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 32515435)
1. Deep learning networks for the recognition and quantitation of surface-enhanced Raman spectroscopy. Weng S; Yuan H; Zhang X; Li P; Zheng L; Zhao J; Huang L Analyst; 2020 Jul; 145(14):4827-4835. PubMed ID: 32515435 [TBL] [Abstract][Full Text] [Related]
2. Label-free detection of trace level zearalenone in corn oil by surface-enhanced Raman spectroscopy (SERS) coupled with deep learning models. Zhu J; Jiang X; Rong Y; Wei W; Wu S; Jiao T; Chen Q Food Chem; 2023 Jul; 414():135705. PubMed ID: 36808025 [TBL] [Abstract][Full Text] [Related]
3. Cascaded Deep Convolutional Neural Networks as Improved Methods of Preprocessing Raman Spectroscopy Data. Kazemzadeh M; Martinez-Calderon M; Xu W; Chamley LW; Hisey CL; Broderick NGR Anal Chem; 2022 Sep; 94(37):12907-12918. PubMed ID: 36067379 [TBL] [Abstract][Full Text] [Related]
4. Serum analysis based on SERS combined with 2D convolutional neural network and Gramian angular field for breast cancer screening. Cheng N; Gao Y; Ju S; Kong X; Lyu J; Hou L; Jin L; Shen B Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 312():124054. PubMed ID: 38382221 [TBL] [Abstract][Full Text] [Related]
5. Label-Free Surface-Enhanced Raman Spectroscopy with Machine Learning for the Diagnosis of Thyroid Cancer by Using Fine-Needle Aspiration Liquid Samples. Gao L; Wu S; Wongwasuratthakul P; Chen Z; Cai W; Li Q; Lin LL Biosensors (Basel); 2024 Jul; 14(8):. PubMed ID: 39194601 [TBL] [Abstract][Full Text] [Related]
6. Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering. Zhu J; Sharma AS; Xu J; Xu Y; Jiao T; Ouyang Q; Li H; Chen Q Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118994. PubMed ID: 33038862 [TBL] [Abstract][Full Text] [Related]
7. Identification of Bacterial Pathogens at Genus and Species Levels through Combination of Raman Spectrometry and Deep-Learning Algorithms. Wang L; Tang JW; Li F; Usman M; Wu CY; Liu QH; Kang HQ; Liu W; Gu B Microbiol Spectr; 2022 Dec; 10(6):e0258022. PubMed ID: 36314973 [TBL] [Abstract][Full Text] [Related]
8. SERSNet: Surface-Enhanced Raman Spectroscopy Based Biomolecule Detection Using Deep Neural Network. Park S; Lee J; Khan S; Wahab A; Kim M Biosensors (Basel); 2021 Nov; 11(12):. PubMed ID: 34940246 [TBL] [Abstract][Full Text] [Related]
9. Improving skin cancer detection by Raman spectroscopy using convolutional neural networks and data augmentation. Zhao J; Lui H; Kalia S; Lee TK; Zeng H Front Oncol; 2024; 14():1320220. PubMed ID: 38962264 [TBL] [Abstract][Full Text] [Related]
10. Identification of antibiotic residues in aquatic products with surface-enhanced Raman scattering powered by 1-D convolutional neural networks. Teng Y; Wang Z; Zuo S; Li X; Chen Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122195. PubMed ID: 36549071 [TBL] [Abstract][Full Text] [Related]
11. White blood cells detection and classification based on regional convolutional neural networks. Kutlu H; Avci E; Özyurt F Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248 [TBL] [Abstract][Full Text] [Related]
12. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm. Savareh BA; Emami H; Hajiabadi M; Azimi SM; Ghafoori M Biomed Tech (Berl); 2019 Apr; 64(2):195-205. PubMed ID: 29813023 [TBL] [Abstract][Full Text] [Related]
13. Classification of osteoarthritic and healthy cartilage using deep learning with Raman spectra. Kok YE; Crisford A; Parkes A; Venkateswaran S; Oreffo R; Mahajan S; Pound M Sci Rep; 2024 Jul; 14(1):15902. PubMed ID: 38987563 [TBL] [Abstract][Full Text] [Related]
14. Wang K; Chen L; Ma X; Ma L; Chou KC; Cao Y; Khan IUH; Gölz G; Lu X Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32801186 [TBL] [Abstract][Full Text] [Related]
15. Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection. Hu J; Zou Y; Sun B; Yu X; Shang Z; Huang J; Jin S; Liang P Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120366. PubMed ID: 34509888 [TBL] [Abstract][Full Text] [Related]
16. Dynamic surface-enhanced Raman spectroscopy and Chemometric methods for fast detection and intelligent identification of methamphetamine and 3, 4-Methylenedioxy methamphetamine in human urine. Weng S; Dong R; Zhu Z; Zhang D; Zhao J; Huang L; Liang D Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():1-7. PubMed ID: 28783586 [TBL] [Abstract][Full Text] [Related]
17. Detection of pancreatic cancer by convolutional-neural-network-assisted spontaneous Raman spectroscopy with critical feature visualization. Li Z; Li Z; Chen Q; Ramos A; Zhang J; Boudreaux JP; Thiagarajan R; Bren-Mattison Y; Dunham ME; McWhorter AJ; Li X; Feng JM; Li Y; Yao S; Xu J Neural Netw; 2021 Dec; 144():455-464. PubMed ID: 34583101 [TBL] [Abstract][Full Text] [Related]
18. Pushing the Limits of Surface-Enhanced Raman Spectroscopy (SERS) with Deep Learning: Identification of Multiple Species with Closely Related Molecular Structures. Lebrun A; Fortin H; Fontaine N; Fillion D; Barbier O; Boudreau D Appl Spectrosc; 2022 May; 76(5):609-619. PubMed ID: 35081756 [TBL] [Abstract][Full Text] [Related]
20. Single-model multi-tasks deep learning network for recognition and quantitation of surface-enhanced Raman spectroscopy. Xie L; Shen Y; Zhang M; Zhong Y; Lu Y; Yang L; Li Z Opt Express; 2022 Nov; 30(23):41580-41589. PubMed ID: 36366632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]