BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32515672)

  • 21. Laminar fMRI: What can the time domain tell us?
    Petridou N; Siero JCW
    Neuroimage; 2019 Aug; 197():761-771. PubMed ID: 28736308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vascular density and distribution in neocortex.
    Schmid F; Barrett MJP; Jenny P; Weber B
    Neuroimage; 2019 Aug; 197():792-805. PubMed ID: 28669910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct, intraoperative observation of ~0.1 Hz hemodynamic oscillations in awake human cortex: implications for fMRI.
    Rayshubskiy A; Wojtasiewicz TJ; Mikell CB; Bouchard MB; Timerman D; Youngerman BE; McGovern RA; Otten ML; Canoll P; McKhann GM; Hillman EM
    Neuroimage; 2014 Feb; 87():323-31. PubMed ID: 24185013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets.
    Santisakultarm TP; Kersbergen CJ; Bandy DK; Ide DC; Choi SH; Silva AC
    J Neurosci Methods; 2016 Sep; 271():55-64. PubMed ID: 27393311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease.
    Liu C; Cárdenas-Rivera A; Teitelbaum S; Birmingham A; Alfadhel M; Yaseen MA
    Alzheimers Res Ther; 2024 Apr; 16(1):78. PubMed ID: 38600598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelial NMDA receptors mediate activity-dependent brain hemodynamic responses in mice.
    Hogan-Cann AD; Lu P; Anderson CM
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10229-10231. PubMed ID: 31061120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of the cerebral blood flow response to brief neural activity in human visual cortex.
    Kim JH; Taylor AJ; Wang DJ; Zou X; Ress D
    J Cereb Blood Flow Metab; 2020 Sep; 40(9):1823-1837. PubMed ID: 31429358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tonic Local Brain Blood Flow Control by Astrocytes Independent of Phasic Neurovascular Coupling.
    Rosenegger DG; Tran CH; Wamsteeker Cusulin JI; Gordon GR
    J Neurosci; 2015 Sep; 35(39):13463-74. PubMed ID: 26424891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Key Aspects of Neurovascular Control Mediated by Specific Populations of Inhibitory Cortical Interneurons.
    Lee L; Boorman L; Glendenning E; Christmas C; Sharp P; Redgrave P; Shabir O; Bracci E; Berwick J; Howarth C
    Cereb Cortex; 2020 Apr; 30(4):2452-2464. PubMed ID: 31746324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depth-dependent flow and pressure characteristics in cortical microvascular networks.
    Schmid F; Tsai PS; Kleinfeld D; Jenny P; Weber B
    PLoS Comput Biol; 2017 Feb; 13(2):e1005392. PubMed ID: 28196095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative hemodynamic response without neuronal inhibition investigated by combining optical imaging and electrophysiological recording.
    Ma Z; Cao P; Sun P; Lu Z; Li L; Chen Y; Chai X
    Neurosci Lett; 2017 Jan; 637():161-167. PubMed ID: 27856222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical lamina-dependent blood volume changes in human brain at 7 T.
    Huber L; Goense J; Kennerley AJ; Trampel R; Guidi M; Reimer E; Ivanov D; Neef N; Gauthier CJ; Turner R; Möller HE
    Neuroimage; 2015 Feb; 107():23-33. PubMed ID: 25479018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Submillimeter-resolution fMRI: Toward understanding local neural processing.
    Fukuda M; Poplawsky AJ; Kim SG
    Prog Brain Res; 2016; 225():123-52. PubMed ID: 27130414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation.
    Srinivasan VJ; Radhakrishnan H
    Neuroimage; 2014 Nov; 102 Pt 2(0 2):393-406. PubMed ID: 25111471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat.
    Martin C; Martindale J; Berwick J; Mayhew J
    Neuroimage; 2006 Aug; 32(1):33-48. PubMed ID: 16725349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain.
    Kozberg MG; Chen BR; DeLeo SE; Bouchard MB; Hillman EM
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4380-5. PubMed ID: 23426630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesoscopic mapping of hemodynamic responses and neuronal activity during pharmacologically induced interictal spikes in awake and anesthetized mice.
    Li J; Yang F; Zhan F; Estin J; Iyer A; Zhao M; Niemeyer JE; Luo P; Li D; Lin W; Liou JY; Ma H; Schwartz TH
    J Cereb Blood Flow Metab; 2024 Jun; 44(6):911-924. PubMed ID: 38230631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression.
    Sakadzić S; Yuan S; Dilekoz E; Ruvinskaya S; Vinogradov SA; Ayata C; Boas DA
    Appl Opt; 2009 Apr; 48(10):D169-77. PubMed ID: 19340106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-Intensity Pulsed Ultrasound Stimulation Induces Coupling Between Ripple Neural Activity and Hemodynamics in the Mouse Visual Cortex.
    Yuan Y; Wang Z; Wang X; Yan J; Liu M; Li X
    Cereb Cortex; 2019 Jul; 29(7):3220-3223. PubMed ID: 30124791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.