BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32515692)

  • 1.
    Demir E
    J Toxicol Environ Health A; 2020 Jun; 83(11-12):456-469. PubMed ID: 32515692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila.
    Carmona ER; Escobar B; Vales G; Marcos R
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Jan; 778():12-21. PubMed ID: 25726144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of differently shaped TiO
    García-Rodríguez A; Vila L; Cortés C; Hernández A; Marcos R
    Part Fibre Toxicol; 2018 Aug; 15(1):33. PubMed ID: 30086772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model.
    Alaraby M; Annangi B; Hernández A; Creus A; Marcos R
    J Hazard Mater; 2015 Oct; 296():166-174. PubMed ID: 25917694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel insights into biodegradation, interaction, internalization and impacts of high-aspect-ratio TiO
    Alaraby M; Hernández A; Marcos R
    J Hazard Mater; 2021 May; 409():124474. PubMed ID: 33187802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo genotoxicity assessment of titanium, zirconium and aluminium nanoparticles, and their microparticulated forms, in Drosophila.
    Demir E; Turna F; Vales G; Kaya B; Creus A; Marcos R
    Chemosphere; 2013 Nov; 93(10):2304-10. PubMed ID: 24095613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model.
    Turna Demir F; Demir E
    J Appl Toxicol; 2022 Nov; 42(11):1854-1867. PubMed ID: 35837816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae.
    Demir E; Marcos R
    Food Chem Toxicol; 2017 Jul; 105():1-7. PubMed ID: 28343031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model.
    Alaraby M; Hernández A; Annangi B; Demir E; Bach J; Rubio L; Creus A; Marcos R
    Nanotoxicology; 2015; 9(6):749-59. PubMed ID: 25358738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic in vivo study of NiO nanowires and nanospheres: biodegradation, uptake and biological impacts.
    Alaraby M; Hernández A; Marcos R
    Nanotoxicology; 2018 Nov; 12(9):1027-1044. PubMed ID: 30253711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and
    Ng CT; Yong LQ; Hande MP; Ong CN; Yu LE; Bay BH; Baeg GH
    Int J Nanomedicine; 2017; 12():1621-1637. PubMed ID: 28280330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes.
    Jovanović B; Cvetković VJ; Mitrović TLj
    Chemosphere; 2016 Feb; 144():43-9. PubMed ID: 26344147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotoxicity mechanism of food preservative propionic acid in the
    Turna Demir F; Demir E
    Toxicol Mech Methods; 2023 May; 33(4):327-336. PubMed ID: 36253933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity.
    Kermanizadeh A; Vranic S; Boland S; Moreau K; Baeza-Squiban A; Gaiser BK; Andrzejczuk LA; Stone V
    BMC Nephrol; 2013 Apr; 14():96. PubMed ID: 23617532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test.
    Reis Éde M; Rezende AA; Oliveira PF; Nicolella HD; Tavares DC; Silva AC; Dantas NO; Spanó MA
    Food Chem Toxicol; 2016 Oct; 96():309-19. PubMed ID: 27562929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the genotoxicity of digested titanium dioxide nanomaterials in human intestinal cells.
    Vieira A; Vital N; Rolo D; Roque R; Gonçalves LM; Bettencourt A; Silva MJ; Louro H
    Food Chem Toxicol; 2022 Mar; 161():112841. PubMed ID: 35093430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic and Genotoxic Effects of Silver Nanoparticles in Drosophila.
    Alaraby M; Romero S; Hernández A; Marcos R
    Environ Mol Mutagen; 2019 Apr; 60(3):277-285. PubMed ID: 30353950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster.
    Anet A; Olakkaran S; Kizhakke Purayil A; Hunasanahally Puttaswamygowda G
    J Hazard Mater; 2019 May; 370():42-53. PubMed ID: 30213494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster.
    Shukla AK; Pragya P; Chowdhuri DK
    Mutat Res; 2011 Dec; 726(2):222-6. PubMed ID: 22005018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae.
    Fang Q; Shi X; Zhang L; Wang Q; Wang X; Guo Y; Zhou B
    J Hazard Mater; 2015; 283():897-904. PubMed ID: 25464334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.