These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32515955)

  • 1. Fragment Screening Hit Draws Attention to a Novel Transient Pocket Adjacent to the Recognition Site of the tRNA-Modifying Enzyme TGT.
    Hassaan E; Hohn C; Ehrmann FR; Goetzke FW; Movsisyan L; Hüfner-Wulsdorf T; Sebastiani M; Härtsch A; Reuter K; Diederich F; Klebe G
    J Med Chem; 2020 Jul; 63(13):6802-6820. PubMed ID: 32515955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile.
    Romier C; Reuter K; Suck D; Ficner R
    Biochemistry; 1996 Dec; 35(49):15734-9. PubMed ID: 8961936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor.
    Biela I; Tidten-Luksch N; Immekus F; Glinca S; Nguyen TX; Gerber HD; Heine A; Klebe G; Reuter K
    PLoS One; 2013; 8(5):e64240. PubMed ID: 23704982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replacement of water molecules in a phosphate binding site by furanoside-appended lin-benzoguanine ligands of tRNA-guanine transglycosylase (TGT).
    Barandun LJ; Ehrmann FR; Zimmerli D; Immekus F; Giroud M; Grünenfelder C; Schweizer WB; Bernet B; Betz M; Heine A; Klebe G; Diederich F
    Chemistry; 2015 Jan; 21(1):126-35. PubMed ID: 25483606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Launching spiking ligands into a protein-protein interface: a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme.
    Immekus F; Barandun LJ; Betz M; Debaene F; Petiot S; Sanglier-Cianferani S; Reuter K; Diederich F; Klebe G
    ACS Chem Biol; 2013; 8(6):1163-78. PubMed ID: 23534552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible adaptations in the structure of the tRNA-modifying enzyme tRNA-guanine transglycosylase and their implications for substrate selectivity, reaction mechanism and structure-based drug design.
    Brenk R; Stubbs MT; Heine A; Reuter K; Klebe G
    Chembiochem; 2003 Oct; 4(10):1066-77. PubMed ID: 14523925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soaking suggests "alternative facts": Only co-crystallization discloses major ligand-induced interface rearrangements of a homodimeric tRNA-binding protein indicating a novel mode-of-inhibition.
    Ehrmann FR; Stojko J; Metz A; Debaene F; Barandun LJ; Heine A; Diederich F; Cianférani S; Reuter K; Klebe G
    PLoS One; 2017; 12(4):e0175723. PubMed ID: 28419165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of aspartic acid 143 in E. coli tRNA-guanine transglycosylase: insights from mutagenesis studies and computational modeling.
    Todorov KA; Tan XJ; Nonekowski ST; Garcia GA; Carlson HA
    Biophys J; 2005 Sep; 89(3):1965-77. PubMed ID: 15951383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure analysis and in silico pKa calculations suggest strong pKa shifts of ligands as driving force for high-affinity binding to TGT.
    Ritschel T; Hoertner S; Heine A; Diederich F; Klebe G
    Chembiochem; 2009 Mar; 10(4):716-27. PubMed ID: 19199329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tRNA-guanine transglycosylase from Escherichia coli: recognition of noncognate-cognate chimeric tRNA and discovery of a novel recognition site within the TpsiC arm of tRNA(Phe).
    Kung FL; Nonekowski S; Garcia GA
    RNA; 2000 Feb; 6(2):233-44. PubMed ID: 10688362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new target for shigellosis: rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase.
    Grädler U; Gerber HD; Goodenough-Lashua DM; Garcia GA; Ficner R; Reuter K; Stubbs MT; Klebe G
    J Mol Biol; 2001 Feb; 306(3):455-67. PubMed ID: 11178905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of tRNA-guanine transglycosylase (TGT) in complex with novel and potent inhibitors unravel pronounced induced-fit adaptations and suggest dimer formation upon substrate binding.
    Stengl B; Meyer EA; Heine A; Brenk R; Diederich F; Klebe G
    J Mol Biol; 2007 Jul; 370(3):492-511. PubMed ID: 17524419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases.
    Chen YC; Brooks AF; Goodenough-Lashua DM; Kittendorf JD; Showalter HD; Garcia GA
    Nucleic Acids Res; 2011 Apr; 39(7):2834-44. PubMed ID: 21131277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An essential role for aspartate 264 in catalysis by tRNA-guanine transglycosylase from Escherichia coli.
    Kittendorf JD; Sgraja T; Reuter K; Klebe G; Garcia GA
    J Biol Chem; 2003 Oct; 278(43):42369-76. PubMed ID: 12909636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-affinity inhibitors of Zymomonas mobilis tRNA-guanine transglycosylase through convergent optimization.
    Barandun LJ; Immekus F; Kohler PC; Ritschel T; Heine A; Orlando P; Klebe G; Diederich F
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1798-807. PubMed ID: 23999303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From lin-benzoguanines to lin-benzohypoxanthines as ligands for Zymomonas mobilis tRNA-guanine transglycosylase: replacement of protein-ligand hydrogen bonding by importing water clusters.
    Barandun LJ; Immekus F; Kohler PC; Tonazzi S; Wagner B; Wendelspiess S; Ritschel T; Heine A; Kansy M; Klebe G; Diederich F
    Chemistry; 2012 Jul; 18(30):9246-57. PubMed ID: 22736391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Plasmodium falciparum apicoplast-targeted tRNA-guanine transglycosylase and its potential inhibitors using comparative genomics, molecular modelling, docking and simulation studies.
    Sawhney B; Chopra K; Misra R; Ranjan A
    J Biomol Struct Dyn; 2015; 33(11):2404-20. PubMed ID: 25869381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray absorption spectroscopy of the zinc site in tRNA-guanine transglycosylase from Escherichia coli.
    Garcia GA; Tierney DL; Chong S; Clark K; Penner-Hahn JE
    Biochemistry; 1996 Mar; 35(9):3133-9. PubMed ID: 8608154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism.
    Stengl B; Reuter K; Klebe G
    Chembiochem; 2005 Nov; 6(11):1926-39. PubMed ID: 16206323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar Acetonides are a Superior Motif for Addressing the Large, Solvent-Exposed Ribose-33 Pocket of tRNA-Guanine Transglycosylase.
    Movsisyan LD; Schäfer E; Nguyen A; Ehrmann FR; Schwab A; Rossolini T; Zimmerli D; Wagner B; Daff H; Heine A; Klebe G; Diederich F
    Chemistry; 2018 Jul; 24(39):9957-9967. PubMed ID: 29939431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.