These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32516060)
1. Movement and Gaze Behavior in Virtual Audiovisual Listening Environments Resembling Everyday Life. Hendrikse MME; Llorach G; Hohmann V; Grimm G Trends Hear; 2019; 23():2331216519872362. PubMed ID: 32516060 [TBL] [Abstract][Full Text] [Related]
2. Self-motion with Hearing Impairment and (Directional) Hearing Aids. Hendrikse MME; Eichler T; Hohmann V; Grimm G Trends Hear; 2022; 26():23312165221078707. PubMed ID: 35341403 [TBL] [Abstract][Full Text] [Related]
3. Effects of Hearing Loss on Dual-Task Performance in an Audiovisual Virtual Reality Simulation of Listening While Walking. Lau ST; Pichora-Fuller MK; Li KZ; Singh G; Campos JL J Am Acad Audiol; 2016 Jul; 27(7):567-87. PubMed ID: 27406663 [TBL] [Abstract][Full Text] [Related]
4. The Virtual Reality Lab: Realization and Application of Virtual Sound Environments. Hohmann V; Paluch R; Krueger M; Meis M; Grimm G Ear Hear; 2020; 41 Suppl 1(Suppl 1):31S-38S. PubMed ID: 33105257 [TBL] [Abstract][Full Text] [Related]
5. Effects of unilateral input and mode of hearing in the better ear: self-reported performance using the speech, spatial and qualities of hearing scale. Dwyer NY; Firszt JB; Reeder RM Ear Hear; 2014; 35(1):126-36. PubMed ID: 24084062 [TBL] [Abstract][Full Text] [Related]
6. Superhuman Hearing - Virtual Prototyping of Artificial Hearing: a Case Study on Interactions and Acoustic Beamforming. Geronazzo M; Vieira LS; Nilsson NC; Udesen J; Serafin S IEEE Trans Vis Comput Graph; 2020 May; 26(5):1912-1922. PubMed ID: 32070968 [TBL] [Abstract][Full Text] [Related]
7. The robustness of hearing aid microphone preferences in everyday listening environments. Walden BE; Surr RK; Cord MT; Grant KW; Summers V; Dittberner AB J Am Acad Audiol; 2007 May; 18(5):358-79. PubMed ID: 17715647 [TBL] [Abstract][Full Text] [Related]
8. The Effects of Extended Input Dynamic Range on Laboratory and Field-Trial Evaluations in Adult Hearing Aid Users. Plyler PN; Easterday M; Behrens T J Am Acad Audiol; 2019; 30(7):634-648. PubMed ID: 30403956 [TBL] [Abstract][Full Text] [Related]
9. An Extended Binaural Real-Time Auralization System With an Interface to Research Hearing Aids for Experiments on Subjects With Hearing Loss. Pausch F; Aspöck L; Vorländer M; Fels J Trends Hear; 2018; 22():2331216518800871. PubMed ID: 30322347 [TBL] [Abstract][Full Text] [Related]
10. The influence of age, hearing, and working memory on the speech comprehension benefit derived from an automatic speech recognition system. Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T Ear Hear; 2009 Apr; 30(2):262-72. PubMed ID: 19194286 [TBL] [Abstract][Full Text] [Related]
11. Spatial Acoustic Scenarios in Multichannel Loudspeaker Systems for Hearing Aid Evaluation. Grimm G; Kollmeier B; Hohmann V J Am Acad Audiol; 2016 Jul; 27(7):557-66. PubMed ID: 27406662 [TBL] [Abstract][Full Text] [Related]
12. Common Sound Scenarios: A Context-Driven Categorization of Everyday Sound Environments for Application in Hearing-Device Research. Wolters F; Smeds K; Schmidt E; Christensen EK; Norup C J Am Acad Audiol; 2016 Jul; 27(7):527-40. PubMed ID: 27406660 [TBL] [Abstract][Full Text] [Related]
13. Construct Validity of the Ecological Momentary Assessment in Audiology Research. Wu YH; Stangl E; Zhang X; Bentler RA J Am Acad Audiol; 2015; 26(10):872-84. PubMed ID: 26554491 [TBL] [Abstract][Full Text] [Related]
14. The impact of head angle on monaural and binaural performance with directional and omnidirectional hearing aids. Ricketts T Ear Hear; 2000 Aug; 21(4):318-28. PubMed ID: 10981608 [TBL] [Abstract][Full Text] [Related]
15. The influence of audiovisual ceiling performance on the relationship between reverberation and directional benefit: perception and prediction. Wu YH; Bentler RA Ear Hear; 2012; 33(5):604-14. PubMed ID: 22677815 [TBL] [Abstract][Full Text] [Related]
16. Using trainable hearing aids to examine real-world preferred gain. Mueller HG; Hornsby BW; Weber JE J Am Acad Audiol; 2008; 19(10):758-73. PubMed ID: 19358456 [TBL] [Abstract][Full Text] [Related]
17. Speech-clarity judgments of hearing-aid-processed speech in noise: differing polar patterns and acoustic environments. Amlani AM; Rakerd B; Punch JL Int J Audiol; 2006 Jun; 45(6):319-30. PubMed ID: 16777778 [TBL] [Abstract][Full Text] [Related]
18. Degree of Hearing Loss Affects Bilateral Hearing Aid Benefits in Ecologically Relevant Laboratory Conditions. Ricketts TA; Picou EM; Shehorn J; Dittberner AB J Speech Lang Hear Res; 2019 Oct; 62(10):3834-3850. PubMed ID: 31596645 [TBL] [Abstract][Full Text] [Related]
19. Introducing real-life listening features into the clinical test environment: Part I: Measuring the hearing performance and evaluating the listening effort of individuals with normal hearing. Bräcker T; Opie J; Nopp P; Anderson I Cochlear Implants Int; 2019 May; 20(3):138-146. PubMed ID: 30789103 [TBL] [Abstract][Full Text] [Related]
20. An examination of speech reception thresholds measured in a simulated reverberant cafeteria environment. Best V; Keidser G; Buchholz JM; Freeston K Int J Audiol; 2015; 54(10):682-90. PubMed ID: 25853616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]