BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32516526)

  • 1. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants.
    Mocniak LE; Elkin K; Bollinger JM
    Biochemistry; 2020 Jul; 59(26):2432-2441. PubMed ID: 32516526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense.
    Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U
    Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates.
    Burow M; Markert J; Gershenzon J; Wittstock U
    FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of specifier proteins in glucosinolate-containing plants.
    Kuchernig JC; Burow M; Wittstock U
    BMC Evol Biol; 2012 Jul; 12():127. PubMed ID: 22839361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein.
    Burow M; Bergner A; Gershenzon J; Wittstock U
    Plant Mol Biol; 2007 Jan; 63(1):49-61. PubMed ID: 17139450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
    Winde I; Wittstock U
    Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown.
    Backenköhler A; Eisenschmidt D; Schneegans N; Strieker M; Brandt W; Wittstock U
    PLoS One; 2018; 13(11):e0205755. PubMed ID: 30395611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana.
    Kissen R; Bones AM
    J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation.
    Eisenschmidt-Bönn D; Schneegans N; Backenköhler A; Wittstock U; Brandt W
    Plant J; 2019 Jul; 99(2):329-343. PubMed ID: 30900313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular models and mutational analyses of plant specifier proteins suggest active site residues and reaction mechanism.
    Brandt W; Backenköhler A; Schulze E; Plock A; Herberg T; Roese E; Wittstock U
    Plant Mol Biol; 2014 Jan; 84(1-2):173-88. PubMed ID: 23999604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.
    Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ
    Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions.
    Kong XY; Kissen R; Bones AM
    Phytochemistry; 2012 Dec; 84():7-17. PubMed ID: 22954730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Cellular and Subcellular Organization of the Glucosinolate-Myrosinase System against Herbivores and Pathogens.
    Lv Q; Li X; Fan B; Zhu C; Chen Z
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile.
    Williams DJ; Critchley C; Pun S; Nottingham S; O'Hare TJ
    Phytochemistry; 2008 Nov; 69(16):2765-73. PubMed ID: 18977005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of Three Epithiospecifier Protein Isoforms in
    Witzel K; Abu Risha M; Albers P; Börnke F; Hanschen FS
    Front Plant Sci; 2019; 10():1552. PubMed ID: 31921230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein modeling and active site binding mode interactions of myrosinase-sinigrin in Brassica juncea--an in silico approach.
    Kumar R; Kumar S; Sangwan S; Yadav IS; Yadav R
    J Mol Graph Model; 2011 Feb; 29(5):740-6. PubMed ID: 21236711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.
    Beran F; Pauchet Y; Kunert G; Reichelt M; Wielsch N; Vogel H; Reinecke A; Svatoš A; Mewis I; Schmid D; Ramasamy S; Ulrichs C; Hansson BS; Gershenzon J; Heckel DG
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7349-54. PubMed ID: 24799680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations.
    Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B
    J Agric Food Chem; 2006 Oct; 54(20):7628-34. PubMed ID: 17002432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemodiversity of the Glucosinolate-Myrosinase System at the Single Cell Type Resolution.
    Chhajed S; Misra BB; Tello N; Chen S
    Front Plant Sci; 2019; 10():618. PubMed ID: 31164896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.
    Burow M; Losansky A; Müller R; Plock A; Kliebenstein DJ; Wittstock U
    Plant Physiol; 2009 Jan; 149(1):561-74. PubMed ID: 18987211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.