BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32516596)

  • 1. Folding Keratin Gene Clusters during Skin Regional Specification.
    Liang YC; Wu P; Lin GW; Chen CK; Yeh CY; Tsai S; Yan J; Jiang TX; Lai YC; Huang D; Cai M; Choi R; Widelitz RB; Lu W; Chuong CM
    Dev Cell; 2020 Jun; 53(5):561-576.e9. PubMed ID: 32516596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional specific differentiation of integumentary organs: SATB2 is involved in α- and β-keratin gene cluster switching in the chicken.
    Lin GW; Liang YC; Wu P; Chen CK; Lai YC; Jiang TX; Haung YH; Chuong CM
    Dev Dyn; 2022 Sep; 251(9):1490-1508. PubMed ID: 34240503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional Specific Differentiation of Integumentary Organs: Regulation of Gene Clusters within the Avian Epidermal Differentiation Complex and Impacts of SATB2 Overexpression.
    Lin GW; Lai YC; Liang YC; Widelitz RB; Wu P; Chuong CM
    Genes (Basel); 2021 Aug; 12(8):. PubMed ID: 34440465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic organization, transcriptomic analysis, and functional characterization of avian α- and β-keratins in diverse feather forms.
    Ng CS; Wu P; Fan WL; Yan J; Chen CK; Lai YT; Wu SM; Mao CT; Chen JJ; Lu MY; Ho MR; Widelitz RB; Chen CF; Chuong CM; Li WH
    Genome Biol Evol; 2014 Aug; 6(9):2258-73. PubMed ID: 25152353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topographical mapping of α- and β-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives.
    Wu P; Ng CS; Yan J; Lai YC; Chen CK; Lai YT; Wu SM; Chen JJ; Luo W; Widelitz RB; Li WH; Chuong CM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):E6770-9. PubMed ID: 26598683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-keratin localization in developing alligator scales and feathers in relation to the development and evolution of feathers.
    Alibardi L; Knapp LW; Sawyer RH
    J Submicrosc Cytol Pathol; 2006; 38(2-3):175-92. PubMed ID: 17784647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken.
    Kowata K; Nakaoka M; Nishio K; Fukao A; Satoh A; Ogoshi M; Takahashi S; Tsudzuki M; Takeuchi S
    Gene; 2014 May; 542(1):23-8. PubMed ID: 24631266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory Divergence among Beta-Keratin Genes during Bird Evolution.
    Bhattacharjee MJ; Yu CP; Lin JJ; Ng CS; Wang TY; Lin HH; Li WH
    Mol Biol Evol; 2016 Nov; 33(11):2769-2780. PubMed ID: 27501942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How a Bird Gets Its Feathers: Insights from Chromatin Looping.
    Xu M; Millar SE
    Dev Cell; 2020 Jun; 53(5):493-495. PubMed ID: 32516592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell structure of developing barbs and barbules in downfeathers of the chick: Central role of barb ridge morphogenesis for the evolution of feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Apr; 37(1):19-41. PubMed ID: 16136726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic organization and molecular phylogenies of the beta (beta) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution.
    Greenwold MJ; Sawyer RH
    BMC Evol Biol; 2010 May; 10():148. PubMed ID: 20482795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis.
    Alibardi L; Toni M
    Prog Histochem Cytochem; 2008; 43(1):1-69. PubMed ID: 18394491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles.
    Greenwold MJ; Bao W; Jarvis ED; Hu H; Li C; Gilbert MT; Zhang G; Sawyer RH
    BMC Evol Biol; 2014 Dec; 14():249. PubMed ID: 25496280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Regulatory Modules Are Required for Scale-to-Feather Conversion.
    Wu P; Yan J; Lai YC; Ng CS; Li A; Jiang X; Elsey RM; Widelitz R; Bajpai R; Li WH; Chuong CM
    Mol Biol Evol; 2018 Feb; 35(2):417-430. PubMed ID: 29177513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of embryonic chick feather-forming and scale-forming tissues in transfilter cultures.
    Peterson CA; Grainger RM
    Dev Biol; 1985 Sep; 111(1):8-25. PubMed ID: 2411616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How and when the regional competence of chick epidermis is established: feathers vs. scutate and reticulate scales, a problem en route to a solution.
    Prin F; Dhouailly D
    Int J Dev Biol; 2004; 48(2-3):137-48. PubMed ID: 15272378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins.
    Greenwold MJ; Sawyer RH
    J Exp Zool B Mol Dev Evol; 2013 Sep; 320(6):393-405. PubMed ID: 23744807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avian feather development: relationships between morphogenesis and keratinization.
    Haake AR; König G; Sawyer RH
    Dev Biol; 1984 Dec; 106(2):406-13. PubMed ID: 6209181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression patterns of three JAK-STAT pathway genes in feather follicle development during chicken embryogenesis.
    Tao Y; Zhou X; Liu Z; Zhang X; Nie Y; Zheng X; Li S; Hu X; Yang G; Zhao Q; Mou C
    Gene Expr Patterns; 2020 Jan; 35():119078. PubMed ID: 31759166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review: cornification, morphogenesis and evolution of feathers.
    Alibardi L
    Protoplasma; 2017 May; 254(3):1259-1281. PubMed ID: 27614891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.