These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32516700)

  • 1. Fast reconstruction of atomic-scale STEM-EELS images from sparse sampling.
    Monier E; Oberlin T; Brun N; Li X; Tencé M; Dobigeon N
    Ultramicroscopy; 2020 Aug; 215():112993. PubMed ID: 32516700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrotemporal CT data acquisition and reconstruction at low dose.
    Clark DP; Lee CL; Kirsch DG; Badea CT
    Med Phys; 2015 Nov; 42(11):6317-36. PubMed ID: 26520724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging.
    Shiga M; Ono T; Morishita K; Kuno K; Moriguchi N
    Microscopy (Oxf); 2024 May; ():. PubMed ID: 38757783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is there a Stobbs factor in atomic-resolution STEM-EELS mapping?
    Xin HL; Dwyer C; Muller DA
    Ultramicroscopy; 2014 Apr; 139():38-46. PubMed ID: 24561427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A continuous sampling pattern design algorithm for atomic force microscopy images.
    Luo Y; Andersson SB
    Ultramicroscopy; 2019 Jan; 196():167-179. PubMed ID: 30412842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and spectral dynamics in STEM hyperspectral imaging using random scan patterns.
    Zobelli A; Woo SY; Tararan A; Tizei LHG; Brun N; Li X; Stéphan O; Kociak M; Tencé M
    Ultramicroscopy; 2020 May; 212():112912. PubMed ID: 31812451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of atomic resolved plasmon-loss image by spherical aberration-corrected STEM-EELS method.
    Yamazaki T; Kotaka Y; Tsukada M; Kataoka Y
    Ultramicroscopy; 2010 Aug; 110(9):1161-5. PubMed ID: 20451326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping Chemical Bonds in Semiconductor Devices by Monitoring the Shifts of EELS Edges.
    Potapov P; Svistunova EL; Gulyaev AA
    Microsc Microanal; 2017 Oct; 23(5):926-931. PubMed ID: 28849753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EELS tomography in multiferroic nanocomposites: from spectrum images to the spectrum volume.
    Yedra L; Eljarrat A; Rebled JM; López-Conesa L; Dix N; Sánchez F; Estradé S; Peiró F
    Nanoscale; 2014 Jun; 6(12):6646-50. PubMed ID: 24816972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization.
    Shiga M; Tatsumi K; Muto S; Tsuda K; Yamamoto Y; Mori T; Tanji T
    Ultramicroscopy; 2016 Nov; 170():43-59. PubMed ID: 27529804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High speed/low dose analytical electron microscopy with dynamic sampling.
    Hujsak KA; Roth EW; Kellogg W; Li Y; Dravid VP
    Micron; 2018 May; 108():31-40. PubMed ID: 29550673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope.
    Yakovlev S; Libera M
    Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.
    Lai Z; Zhang X; Guo D; Du X; Yang Y; Guo G; Chen Z; Qu X
    BMC Med Imaging; 2018 May; 18(1):7. PubMed ID: 29724180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-Sampled Imaging for STEM: Maximising Image Speed, Resolution and Precision Through Reconstruction Parameter Refinement.
    Nicholls D; Wells J; Stevens A; Zheng Y; Castagna J; Browning ND
    Ultramicroscopy; 2022 Mar; 233():113451. PubMed ID: 34915288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-dimensional STEM-EELS: enabling nano-scale chemical tomography.
    Jarausch K; Thomas P; Leonard DN; Twesten R; Booth CR
    Ultramicroscopy; 2009 Mar; 109(4):326-37. PubMed ID: 19246157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annular electron energy-loss spectroscopy in the scanning transmission electron microscope.
    Ruben G; Bosman M; D'Alfonso AJ; Okunishi E; Kondo Y; Allen LJ
    Ultramicroscopy; 2011 Nov; 111(11):1540-6. PubMed ID: 21939618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressed sensing for STEM tomography.
    Donati L; Nilchian M; Trépout S; Messaoudi C; Marco S; Unser M
    Ultramicroscopy; 2017 Aug; 179():47-56. PubMed ID: 28411510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy.
    Allen LJ; Findlay SD; Lupini AR; Oxley MP; Pennycook SJ
    Phys Rev Lett; 2003 Sep; 91(10):105503. PubMed ID: 14525490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures.
    Warner JH; Lin YC; He K; Koshino M; Suenaga K
    ACS Nano; 2014 Nov; 8(11):11806-15. PubMed ID: 25389658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a monochromator for aberration-corrected scanning transmission electron microscopy.
    Mukai M; Okunishi E; Ashino M; Omoto K; Fukuda T; Ikeda A; Somehara K; Kaneyama T; Saitoh T; Hirayama T; Ikuhara Y
    Microscopy (Oxf); 2015 Jun; 64(3):151-8. PubMed ID: 25654985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.