BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32516726)

  • 1. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction.
    Zhang L; Li L; Rui H; Shi D; Peng X; Ji L; Song X
    J Hazard Mater; 2020 Nov; 398():122840. PubMed ID: 32516726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.
    Yang Y; Xu S; He Y
    Waste Manag; 2017 Jun; 64():219-227. PubMed ID: 28336333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling.
    Guo X; Cao X; Huang G; Tian Q; Sun H
    J Environ Manage; 2017 Aug; 198(Pt 1):84-89. PubMed ID: 28453989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetic Acid Removal from Pre-Pulping Wood Extract with Recovery and Recycling of Extraction Solvents.
    Abdulrahman A; van Walsum GP; Um BH
    Appl Biochem Biotechnol; 2019 Jan; 187(1):378-395. PubMed ID: 29961903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries.
    Yang Y; Lei S; Song S; Sun W; Wang L
    Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process.
    Gao W; Zhang X; Zheng X; Lin X; Cao H; Zhang Y; Sun Z
    Environ Sci Technol; 2017 Feb; 51(3):1662-1669. PubMed ID: 28081362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally-friendly lithium recycling from a spent organic li-ion battery.
    Renault S; Brandell D; Edström K
    ChemSusChem; 2014 Oct; 7(10):2859-67. PubMed ID: 25170568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphite Recycling from Spent Lithium-Ion Batteries.
    Rothermel S; Evertz M; Kasnatscheew J; Qi X; Grützke M; Winter M; Nowak S
    ChemSusChem; 2016 Dec; 9(24):3473-3484. PubMed ID: 27860314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on Zn recovery from other metals in the spent mixed batteries through a sequence of hydrometallurgical processes.
    Shin DJ; Joo SH; Oh CH; Wang JP; Park JT; Min DJ; Shin SM
    Environ Technol; 2019 Nov; 40(26):3512-3522. PubMed ID: 29799331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery.
    Yang Y; Song S; Lei S; Sun W; Hou H; Jiang F; Ji X; Zhao W; Hu Y
    Waste Manag; 2019 Feb; 85():529-537. PubMed ID: 30803608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride.
    Lv W; Wang Z; Cao H; Zheng X; Jin W; Zhang Y; Sun Z
    Waste Manag; 2018 Sep; 79():545-553. PubMed ID: 30343786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration and characterization of LiNi
    Wang Y; Ma L; Xi X; Nie Z; Zhang Y; Wen X; Lyu Z
    Waste Manag; 2019 Jul; 95():192-200. PubMed ID: 31351604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient recovery of molybdenum from spent catalyst by an optimized process.
    Zhang M; Song H; Zheng C; Lin Z; Liu Y; Wu W; Gao X
    J Air Waste Manag Assoc; 2020 Oct; 70(10):971-979. PubMed ID: 32633619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective removal of magnesium from lithium-rich brine for lithium purification by synergic solvent extraction using β-diketones and Cyanex 923.
    Li Z; Binnemans K
    AIChE J; 2020 Jul; 66(7):e16246. PubMed ID: 35866145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of Lithium Chloride into Lithium Hydroxide by Solvent Extraction.
    Nguyen VT; Deferm C; Caytan W; Riaño S; Jones PT; Binnemans K
    J Sustain Metall; 2023; 9(1):107-122. PubMed ID: 36937828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Extraction System Based on Isopropyl Salicylate and Trioctylphosphine Oxide for Separating Alkali Metals.
    Tsivadze AY; Bezdomnikov AA; Baulin VE; Demina LI; Birin KP; Baulin DV; Rogacheva YI
    Molecules; 2022 May; 27(10):. PubMed ID: 35630527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent extraction of lithium and sodium with 4-benzoyl or 4-perfluoroacyl-5-pyrazolone and TOPO.
    Umetani S; Maeda K; Kihara S; Matsui M
    Talanta; 1987 Sep; 34(9):779-82. PubMed ID: 18964405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.