These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32516761)

  • 1. High-speed digitization of the amplitude and frequency in open-loop sideband frequency-modulation Kelvin probe force microscopy.
    Stan G
    Nanotechnology; 2020 Jun; 31(38):385706. PubMed ID: 32516761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode.
    Stan G; Namboodiri P
    Beilstein J Nanotechnol; 2021; 12():1115-1126. PubMed ID: 34703722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.
    Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y
    Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes.
    Ma ZM; Mu JL; Tang J; Xue H; Zhang H; Xue CY; Liu J; Li YJ
    Nanoscale Res Lett; 2013 Dec; 8(1):532. PubMed ID: 24350866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-heterodyne Kelvin probe force microscopy.
    Grévin B; Husainy F; Aldakov D; Aumaître C
    Beilstein J Nanotechnol; 2023; 14():1068-1084. PubMed ID: 38025199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
    Axt A; Hermes IM; Bergmann VW; Tausendpfund N; Weber SAL
    Beilstein J Nanotechnol; 2018; 9():1809-1819. PubMed ID: 29977714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open loop Kelvin probe force microscopy with single and multi-frequency excitation.
    Collins L; Kilpatrick JI; Weber SA; Tselev A; Vlassiouk IV; Ivanov IN; Jesse S; Kalinin SV; Rodriguez BJ
    Nanotechnology; 2013 Nov; 24(47):475702. PubMed ID: 24176878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space.
    Collins L; Belianinov A; Somnath S; Balke N; Kalinin SV; Jesse S
    Sci Rep; 2016 Aug; 6():30557. PubMed ID: 27514987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of surface potential from Kelvin probe force microscopy images.
    Cohen G; Halpern E; Nanayakkara SU; Luther JM; Held C; Bennewitz R; Boag A; Rosenwaks Y
    Nanotechnology; 2013 Jul; 24(29):295702. PubMed ID: 23807266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of high-low KPFM on a pn-patterned Si surface.
    Izumi R; Li YJ; Naitoh Y; Sugawara Y
    Microscopy (Oxf); 2022 Apr; 71(2):98-103. PubMed ID: 35018450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution atomic force and Kelvin probe force microscopy image data of InAs(001) surface using frequency modulation method.
    Park YM; Park JS; Chung CH; Lee S
    Data Brief; 2020 Apr; 29():105177. PubMed ID: 32055662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the local contact potential difference of PTCDA on NaCl: a comparison of techniques.
    Burke SA; LeDue JM; Miyahara Y; Topple JM; Fostner S; Grütter P
    Nanotechnology; 2009 Jul; 20(26):264012. PubMed ID: 19509452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy.
    Miyazaki M; Sugawara Y; Li YJ
    Beilstein J Nanotechnol; 2022; 13():712-720. PubMed ID: 35957676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode.
    Moores B; Hane F; Eng L; Leonenko Z
    Ultramicroscopy; 2010 May; 110(6):708-11. PubMed ID: 20363077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open-loop band excitation Kelvin probe force microscopy.
    Guo S; Kalinin SV; Jesse S
    Nanotechnology; 2012 Mar; 23(12):125704. PubMed ID: 22407131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection.
    Collins L; Okatan MB; Li Q; Kravenchenko II; Lavrik NV; Kalinin SV; Rodriguez BJ; Jesse S
    Nanotechnology; 2015 May; 26(17):175707. PubMed ID: 25851168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water.
    Kilpatrick JI; Kargin E; Rodriguez BJ
    Beilstein J Nanotechnol; 2022; 13():922-943. PubMed ID: 36161252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping.
    Jakob DS; Li N; Zhou H; Xu XG
    Small; 2021 Sep; 17(37):e2102495. PubMed ID: 34310045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.