BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32516763)

  • 1. Characterization of the iron oxide phases formed during the synthesis of core-shell Fe
    Petrov DA; Lin CR; Ivantsov RD; Ovchinnikov SG; Zharkov SM; Yurkin GY; Velikanov DA; Knyazev YV; Molokeev MS; Tseng YT; Lin ES; Edelman IS; Baskakov AO; Starchikov SS; Lyubutin IS
    Nanotechnology; 2020 Sep; 31(39):395703. PubMed ID: 32516763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis of AuPd@Fe
    Sun Y; Chen H; Huang Y; Xu F; Liu G; Ma L; Wang Z
    Biomaterials; 2021 Jul; 274():120821. PubMed ID: 33940539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Fe
    Sarani M; Hamidian K; Barani M; Adeli-Sardou M; Khonakdar HA
    ChemistryOpen; 2023 Jun; 12(6):e202200250. PubMed ID: 37260410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous Ag@WO
    Salim ET; Saimon JA; Muhsin MS; Fakhri MA; Amin MH; Azzahrani AS; Ibrahim RK
    Sci Rep; 2024 Mar; 14(1):5473. PubMed ID: 38443371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.
    Krajewski M; Brzozka K; Lin WS; Lin HM; Tokarczyk M; Borysiuk J; Kowalski G; Wasik D
    Phys Chem Chem Phys; 2016 Feb; 18(5):3900-9. PubMed ID: 26766540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles.
    LaGrow AP; Famiani S; Sergides A; Lari L; Lloyd DC; Takahashi M; Maenosono S; Boyes ED; Gai PL; Thanh NTK
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of size, shape and core-shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiO x.
    D'Addato S; Pinotti D; Spadaro MC; Paolicelli G; Grillo V; Valeri S; Pasquali L; Bergamini L; Corni S
    Beilstein J Nanotechnol; 2015; 6():404-13. PubMed ID: 25821680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step synthesis of magnetic-TiO2-nanocomposites with high iron oxide-composing ratio for photocatalysis of rhodamine 6G.
    Xie E; Zheng L; Li X; Wang Y; Dou J; Ding A; Zhang D
    PLoS One; 2019; 14(8):e0221221. PubMed ID: 31425521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline.
    Abbas M; Torati SR; Kim C
    Nanoscale; 2015 Jul; 7(28):12192-204. PubMed ID: 26132976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-Double-Shell Fe
    Jalili M; Ghanbari H; Malekfar R; Mousavi Masouleh SS
    ACS Omega; 2020 Feb; 5(7):3563-3570. PubMed ID: 32118171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds.
    Hui C; Shen C; Tian J; Bao L; Ding H; Li C; Tian Y; Shi X; Gao HJ
    Nanoscale; 2011 Feb; 3(2):701-5. PubMed ID: 21103488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of Enhancement of Orbital Magnetic Moment in SiO
    Dawn R; Tjiu WW; Aabdin Z; Faizal F; Panatarani C; Joni IM; Akhtar W; Kumar K; Rahaman A; Chandra G; Kandasami A; Amemiya K; Singh VR
    Langmuir; 2023 Oct; 39(39):13807-13819. PubMed ID: 37733972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance.
    Li Y; Zhao J; You W; Cheng D; Ni W
    Nanoscale; 2017 Mar; 9(11):3925-3933. PubMed ID: 28262898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailored Engineering of Bimetallic Plasmonic Au@Ag Core@Shell Nanoparticles.
    Mahmud S; Satter SS; Singh AK; Rahman MM; Mollah MYA; Susan MABH
    ACS Omega; 2019 Nov; 4(19):18061-18075. PubMed ID: 31720509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis.
    Bomatí-Miguel O; Tartaj P; Morales MP; Bonville P; Golla-Schindler U; Zhao XQ; Veintemillas-Verdaguer S
    Small; 2006 Dec; 2(12):1476-83. PubMed ID: 17193009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.
    Tung le M; Cong NX; Huy le T; Lan NT; Phan VN; Hoa NQ; Vinh le K; Thinh NV; Tai le T; Ngo DT; Mølhave K; Huy TQ; Le AT
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5902-12. PubMed ID: 27427651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface interactions and enhanced room temperature ferromagnetism of Ag@CeO
    Chen SY; Tseng E; Lai YT; Lee W; Gloter A
    Nanoscale; 2017 Aug; 9(30):10764-10772. PubMed ID: 28717799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study.
    Zhang H; Liu J; Zhao G; Gao Y; Tyliszczak T; Glans PA; Guo J; Ma D; Sun XH; Zhong J
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7863-8. PubMed ID: 25839786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic synthesis of Ag@Cu
    Tao S; Yang M; Chen H; Ren M; Chen G
    J Colloid Interface Sci; 2017 Jan; 486():16-26. PubMed ID: 27689722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.