These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32516804)

  • 1. Excess Lipin enzyme activity contributes to TOR1A recessive disease and DYT-TOR1A dystonia.
    Cascalho A; Foroozandeh J; Hennebel L; Swerts J; Klein C; Rous S; Dominguez Gonzalez B; Pisani A; Meringolo M; Gallego SF; Verstreken P; Seibler P; Goodchild RE
    Brain; 2020 Jun; 143(6):1746-1765. PubMed ID: 32516804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excess LINC complexes impair brain morphogenesis in a mouse model of recessive TOR1A disease.
    Dominguez Gonzalez B; Billion K; Rous S; Pavie B; Lange C; Goodchild R
    Hum Mol Genet; 2018 Jun; 27(12):2154-2170. PubMed ID: 29868845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral nerve injury elicits microstructural and neurochemical changes in the striatum and substantia nigra of a DYT-TOR1A mouse model with dystonia-like movements.
    Rauschenberger L; Krenig EM; Stengl A; Knorr S; Harder TH; Steeg F; Friedrich MU; Grundmann-Hauser K; Volkmann J; Ip CW
    Neurobiol Dis; 2023 Apr; 179():106056. PubMed ID: 36863527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DYT-TOR1A subcellular proteomics reveals selective vulnerability of the nuclear proteome to cell stress.
    Shroff K; Caffall ZF; Calakos N
    Neurobiol Dis; 2021 Oct; 158():105464. PubMed ID: 34358617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-intrinsic effects of TorsinA(ΔE) disrupt dopamine release in a mouse model of TOR1A dystonia.
    Downs AM; Fan X; Kadakia RF; Donsante Y; Jinnah HA; Hess EJ
    Neurobiol Dis; 2021 Jul; 155():105369. PubMed ID: 33894367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired differentiation of human induced neural stem cells by TOR1A overexpression.
    Stengel F; Vulinovic F; Meier B; Grütz K; Klein C; Capetian P
    Mol Biol Rep; 2020 May; 47(5):3993-4001. PubMed ID: 32239467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of lipin 1-mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice.
    Schweitzer GG; Collier SL; Chen Z; McCommis KS; Pittman SK; Yoshino J; Matkovich SJ; Hsu FF; Chrast R; Eaton JM; Harris TE; Weihl CC; Finck BN
    FASEB J; 2019 Jan; 33(1):652-667. PubMed ID: 30028636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DYT-
    Fan Y; Si Z; Wang L; Zhang L
    Front Neurosci; 2023; 17():1216929. PubMed ID: 37638318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional specificity of synaptic plasticity deficits in a knock-in mouse model of DYT1 dystonia.
    Martella G; Maltese M; Nisticò R; Schirinzi T; Madeo G; Sciamanna G; Ponterio G; Tassone A; Mandolesi G; Vanni V; Pignatelli M; Bonsi P; Pisani A
    Neurobiol Dis; 2014 May; 65():124-32. PubMed ID: 24503369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipin 1 deficiency causes adult-onset myasthenia with motor neuron dysfunction in humans and neuromuscular junction defects in zebrafish.
    Lu S; Lyu Z; Wang Z; Kou Y; Liu C; Li S; Hu M; Zhu H; Wang W; Zhang C; Kuan YS; Liu YW; Chen J; Tian J
    Theranostics; 2021; 11(6):2788-2805. PubMed ID: 33456573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of endoplasmic reticulum stress reverses synaptic plasticity deficits in striatum of DYT1 dystonia mice.
    Cai H; Ni L; Hu X; Ding X
    Aging (Albany NY); 2021 Aug; 13(16):20319-20334. PubMed ID: 34398825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 18FDG-microPET and MR DTI findings in Tor1a+/- heterozygous knock-out mice.
    Vo A; Sako W; Dewey SL; Eidelberg D; Uluğ AM
    Neurobiol Dis; 2015 Jan; 73():399-406. PubMed ID: 25447231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic background modulates the phenotype of a mouse model of DYT1 dystonia.
    Tanabe LM; Martin C; Dauer WT
    PLoS One; 2012; 7(2):e32245. PubMed ID: 22393392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the porcine TOR1A gene: The first step towards generation of a pig model for dystonia.
    Henriksen C; Madsen LB; Bendixen C; Larsen K
    Gene; 2009 Feb; 430(1-2):105-15. PubMed ID: 19028553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration.
    Liang CC; Tanabe LM; Jou S; Chi F; Dauer WT
    J Clin Invest; 2014 Jul; 124(7):3080-92. PubMed ID: 24937429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor deficit and lack of overt dystonia in Dlx conditional Dyt1 knockout mice.
    Berryman D; Barrett J; Liu C; Maugee C; Waldbaum J; Yi D; Xing H; Yokoi F; Saxena S; Li Y
    Behav Brain Res; 2023 Feb; 439():114221. PubMed ID: 36417958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse model of rare TOR1A variant found in sporadic focal dystonia impairs domains affected in DYT1 dystonia patients and animal models.
    Bhagat SL; Qiu S; Caffall ZF; Wan Y; Pan Y; Rodriguiz RM; Wetsel WC; Badea A; Hochgeschwender U; Calakos N
    Neurobiol Dis; 2016 Sep; 93():137-45. PubMed ID: 27168150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TorsinB overexpression prevents abnormal twisting in DYT1 dystonia mouse models.
    Li J; Liang CC; Pappas SS; Dauer WT
    Elife; 2020 Mar; 9():. PubMed ID: 32202496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis.
    Beauvais G; Bode NM; Watson JL; Wen H; Glenn KA; Kawano H; Harata NC; Ehrlich ME; Gonzalez-Alegre P
    J Neurosci; 2016 Oct; 36(40):10245-10256. PubMed ID: 27707963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders.
    Saffari A; Lau T; Tajsharghi H; Karimiani EG; Kariminejad A; Efthymiou S; Zifarelli G; Sultan T; Toosi MB; Sedighzadeh S; Siu VM; Ortigoza-Escobar JD; AlShamsi AM; Ibrahim S; Al-Sannaa NA; Al-Hertani W; Sandra W; Tarnopolsky M; Alavi S; Li C; Day-Salvatore DL; Martínez-González MJ; Levandoski KM; Bedoukian E; Madan-Khetarpal S; Idleburg MJ; Menezes MJ; Siddharth A; Platzer K; Oppermann H; Smitka M; Collins F; Lek M; Shahrooei M; Ghavideldarestani M; Herman I; Rendu J; Faure J; Baker J; Bhambhani V; Calderwood L; Akhondian J; Imannezhad S; Mirzadeh HS; Hashemi N; Doosti M; Safi M; Ahangari N; Torbati PN; Abedini S; Salpietro V; Gulec EY; Eshaghian S; Ghazavi M; Pascher MT; Vogel M; Abicht A; Moutton S; Bruel AL; Rieubland C; Gallati S; Strom TM; Lochmüller H; Mohammadi MH; Alvi JR; Zackai EH; Keena BA; Skraban CM; Berger SI; Andrew EH; Rahimian E; Morrow MM; Wentzensen IM; Millan F; Henderson LB; Dafsari HS; Jungbluth H; Gomez-Ospina N; McRae A; Peter M; Veltra D; Marinakis NM; Sofocleous C; Ashrafzadeh F; Pehlivan D; Lemke JR; Melki J; Benezit A; Bauer P; Weis D; Lupski JR; Senderek J; Christodoulou J; Chung WK; Goodchild R; Offiah AC; Moreno-De-Luca A; Suri M; Ebrahimi-Fakhari D; Houlden H; Maroofian R
    Brain; 2023 Aug; 146(8):3273-3288. PubMed ID: 36757831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.