BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32516935)

  • 1. Label-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors.
    Liang Y; Guo T; Zhou L; Offenhäusser A; Mayer D
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32516935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors.
    Liang Y; Wu C; Figueroa-Miranda G; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2019 Nov; 144():111668. PubMed ID: 31522101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo.
    Xie K; Wang N; Lin X; Wang Z; Zhao X; Fang P; Yue H; Kim J; Luo J; Cui S; Yan F; Shi P
    Elife; 2020 Feb; 9():. PubMed ID: 32043970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized Organic Thin Film Transistors for Biosensing.
    Wang N; Yang A; Fu Y; Li Y; Yan F
    Acc Chem Res; 2019 Feb; 52(2):277-287. PubMed ID: 30620566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors.
    Liao C; Zhang M; Niu L; Zheng Z; Yan F
    J Mater Chem B; 2014 Jan; 2(2):191-200. PubMed ID: 32261606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive dopamine biosensors based on organic electrochemical transistors.
    Tang H; Lin P; Chan HL; Yan F
    Biosens Bioelectron; 2011 Jul; 26(11):4559-63. PubMed ID: 21652201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid.
    Zhang L; Wang G; Wu D; Xiong C; Zheng L; Ding Y; Lu H; Zhang G; Qiu L
    Biosens Bioelectron; 2018 Feb; 100():235-241. PubMed ID: 28923558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording.
    Bai L; Elósegui CG; Li W; Yu P; Fei J; Mao L
    Front Chem; 2019; 7():313. PubMed ID: 31134185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEDOT: Dye-Based, Flexible Organic Electrochemical Transistor for Highly Sensitive pH Monitoring.
    Mariani F; Gualandi I; Tessarolo M; Fraboni B; Scavetta E
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22474-22484. PubMed ID: 29883081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Needle-type organic electrochemical transistor for spatially resolved detection of dopamine.
    Mariani F; Quast T; Andronescu C; Gualandi I; Fraboni B; Tonelli D; Scavetta E; Schuhmann W
    Mikrochim Acta; 2020 Jun; 187(7):378. PubMed ID: 32518976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentric-Electrode Organic Electrochemical Transistors: Case Study for Selective Hydrazine Sensing.
    Pecqueur S; Lenfant S; Guérin D; Alibart F; Vuillaume D
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes.
    Ferro LMM; Merces L; de Camargo DHS; Bof Bufon CC
    Adv Mater; 2021 Jul; 33(29):e2101518. PubMed ID: 34061409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic Electrochemical Transistors as Versatile Analytical Potentiometric Sensors.
    Gualandi I; Tessarolo M; Mariani F; Tonelli D; Fraboni B; Scavetta E
    Front Bioeng Biotechnol; 2019; 7():354. PubMed ID: 31824941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring.
    Qing X; Wang Y; Zhang Y; Ding X; Zhong W; Wang D; Wang W; Liu Q; Liu K; Li M; Lu Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13105-13113. PubMed ID: 30896142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed transistor operation enables miniaturization of electrochemical aptamer-based sensors.
    Bidinger SL; Keene ST; Han S; Plaxco KW; Malliaras GG; Hasan T
    Sci Adv; 2022 Nov; 8(46):eadd4111. PubMed ID: 36383656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Photo-Electrochemical Transistor-Based Biosensor: A Proof-of-Concept Study toward Highly Sensitive DNA Detection.
    Song J; Lin P; Ruan YF; Zhao WW; Wei W; Hu J; Ke S; Zeng X; Xu JJ; Chen HY; Ren W; Yan F
    Adv Healthc Mater; 2018 Oct; 7(19):e1800536. PubMed ID: 30117317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine.
    Farjami E; Campos R; Nielsen JS; Gothelf KV; Kjems J; Ferapontova EE
    Anal Chem; 2013 Jan; 85(1):121-8. PubMed ID: 23210972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast-Scanning Potential-Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain.
    Li W; Jin J; Xiong T; Yu P; Mao L
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202204134. PubMed ID: 35583258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality detection of amino acid enantiomers by organic electrochemical transistor.
    Zhang L; Wang G; Xiong C; Zheng L; He J; Ding Y; Lu H; Zhang G; Cho K; Qiu L
    Biosens Bioelectron; 2018 May; 105():121-128. PubMed ID: 29412935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes.
    Liao C; Zhang M; Niu L; Zheng Z; Yan F
    J Mater Chem B; 2013 Aug; 1(31):3820-3829. PubMed ID: 32261135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.