These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32517126)
1. Human Sperm Capacitation Involves the Regulation of the Tyr-Phosphorylation Level of the Anion Exchanger 1 (AE1). Donà G; Tibaldi E; Andrisani A; Ambrosini G; Sabbadin C; Pagano MA; Brunati AM; Armanini D; Ragazzi E; Bordin L Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32517126 [TBL] [Abstract][Full Text] [Related]
2. Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Visconti PE; Stewart-Savage J; Blasco A; Battaglia L; Miranda P; Kopf GS; Tezón JG Biol Reprod; 1999 Jul; 61(1):76-84. PubMed ID: 10377034 [TBL] [Abstract][Full Text] [Related]
3. Cl- is required for HCO3- entry necessary for sperm capacitation in guinea pig: involvement of a Cl-/HCO3- exchanger (SLC26A3) and CFTR. Chen WY; Xu WM; Chen ZH; Ni Y; Yuan YY; Zhou SC; Zhou WW; Tsang LL; Chung YW; Höglund P; Chan HC; Shi QX Biol Reprod; 2009 Jan; 80(1):115-23. PubMed ID: 18784352 [TBL] [Abstract][Full Text] [Related]
4. Astaxanthin Improves Human Sperm Capacitation by Inducing Lyn Displacement and Activation. Andrisani A; Donà G; Tibaldi E; Brunati AM; Sabbadin C; Armanini D; Alvisi G; Gizzo S; Ambrosini G; Ragazzi E; Bordin L Mar Drugs; 2015 Aug; 13(9):5533-51. PubMed ID: 26308013 [TBL] [Abstract][Full Text] [Related]
6. The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation. Rode B; Dirami T; Bakouh N; Rizk-Rabin M; Norez C; Lhuillier P; Lorès P; Jollivet M; Melin P; Zvetkova I; Bienvenu T; Becq F; Planelles G; Edelman A; Gacon G; Touré A Hum Mol Genet; 2012 Mar; 21(6):1287-98. PubMed ID: 22121115 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide regulates the phosphorylation of the threonine-glutamine-tyrosine motif in proteins of human spermatozoa during capacitation. Thundathil J; de Lamirande E; Gagnon C Biol Reprod; 2003 Apr; 68(4):1291-8. PubMed ID: 12606410 [TBL] [Abstract][Full Text] [Related]
8. The ability of feline spermatozoa in different epididymal regions to undergo capacitation and acrosome reaction. Kunkitti P; Bergqvist AS; Sjunnesson Y; Axnér E Anim Reprod Sci; 2015 Oct; 161():64-74. PubMed ID: 26358918 [TBL] [Abstract][Full Text] [Related]
9. Involvement of cystic fibrosis transmembrane conductance regulator in mouse sperm capacitation. Hernández-González EO; Treviño CL; Castellano LE; de la Vega-Beltrán JL; Ocampo AY; Wertheimer E; Visconti PE; Darszon A J Biol Chem; 2007 Aug; 282(33):24397-406. PubMed ID: 17588945 [TBL] [Abstract][Full Text] [Related]
10. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Tardif S; Dubé C; Chevalier S; Bailey JL Biol Reprod; 2001 Sep; 65(3):784-92. PubMed ID: 11514342 [TBL] [Abstract][Full Text] [Related]
11. Capacitation-associated protein tyrosine phosphorylation starts early in buffalo (Bubalus bubalis) spermatozoa as compared to cattle. Roy SC; Atreja SK Anim Reprod Sci; 2009 Feb; 110(3-4):319-25. PubMed ID: 18358647 [TBL] [Abstract][Full Text] [Related]
12. CFTR/ENaC-dependent regulation of membrane potential during human sperm capacitation is initiated by bicarbonate uptake through NBC. Puga Molina LC; Pinto NA; Torres NI; González-Cota AL; Luque GM; Balestrini PA; Romarowski A; Krapf D; Santi CM; Treviño CL; Darszon A; Buffone MG J Biol Chem; 2018 Jun; 293(25):9924-9936. PubMed ID: 29743243 [TBL] [Abstract][Full Text] [Related]
13. Evidence for the involvement of proline-rich tyrosine kinase 2 in tyrosine phosphorylation downstream of protein kinase A activation during human sperm capacitation. Battistone MA; Alvau A; Salicioni AM; Visconti PE; Da Ros VG; Cuasnicú PS Mol Hum Reprod; 2014 Nov; 20(11):1054-66. PubMed ID: 25180269 [TBL] [Abstract][Full Text] [Related]
14. Effect of astaxanthin on human sperm capacitation. Donà G; Kožuh I; Brunati AM; Andrisani A; Ambrosini G; Bonanni G; Ragazzi E; Armanini D; Clari G; Bordin L Mar Drugs; 2013 Jun; 11(6):1909-19. PubMed ID: 23736766 [TBL] [Abstract][Full Text] [Related]
15. Src activation triggers capacitation and acrosome reaction but not motility in human spermatozoa. Varano G; Lombardi A; Cantini G; Forti G; Baldi E; Luconi M Hum Reprod; 2008 Dec; 23(12):2652-62. PubMed ID: 18753142 [TBL] [Abstract][Full Text] [Related]
16. Participation of the Cl-/HCO(3)- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Chávez JC; Hernández-González EO; Wertheimer E; Visconti PE; Darszon A; Treviño CL Biol Reprod; 2012 Jan; 86(1):1-14. PubMed ID: 21976599 [TBL] [Abstract][Full Text] [Related]
17. Essential Role of CFTR in PKA-Dependent Phosphorylation, Alkalinization, and Hyperpolarization During Human Sperm Capacitation. Puga Molina LC; Pinto NA; Torres Rodríguez P; Romarowski A; Vicens Sanchez A; Visconti PE; Darszon A; Treviño CL; Buffone MG J Cell Physiol; 2017 Jun; 232(6):1404-1414. PubMed ID: 27714810 [TBL] [Abstract][Full Text] [Related]
18. Protein tyrosine phosphorylation, hyperactivation and progesterone-induced acrosome reaction are enhanced in IVF media: an effect that is not associated with an increase in protein kinase A activation. Moseley FL; Jha KN; Björndahl L; Brewis IA; Publicover SJ; Barratt CL; Lefièvre L Mol Hum Reprod; 2005 Jul; 11(7):523-9. PubMed ID: 16123082 [TBL] [Abstract][Full Text] [Related]
19. A defined medium supports changes consistent with capacitation in stallion sperm, as evidenced by increases in protein tyrosine phosphorylation and high rates of acrosomal exocytosis. McPartlin LA; Littell J; Mark E; Nelson JL; Travis AJ; Bedford-Guaus SJ Theriogenology; 2008 Mar; 69(5):639-50. PubMed ID: 18242679 [TBL] [Abstract][Full Text] [Related]
20. Human sperm activation during capacitation and acrosome reaction: role of calcium, protein phosphorylation and lipid remodelling pathways. Baldi E; Luconi M; Bonaccorsi L; Krausz C; Forti G Front Biosci; 1996 Aug; 1():d189-205. PubMed ID: 9159227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]